[1]何丽,赵焱钢,邱林利,等.雌激素β受体对小鼠海马actin聚合调节蛋白表达的影响及其机制[J].第三军医大学学报,2017,39(09):852-857.
 He Li,Zhao Yangang,Qiu Linli,et al.Estrogen receptor beta regulates actin polymerization related proteins in mouse hippocampus[J].J Third Mil Med Univ,2017,39(09):852-857.
点击复制

雌激素β受体对小鼠海马actin聚合调节蛋白表达的影响及其机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第09期
页码:
852-857
栏目:
基础医学
出版日期:
2017-05-15

文章信息/Info

Title:
Estrogen receptor beta regulates actin polymerization related proteins in mouse hippocampus
作者:
何丽赵焱钢邱林利张媛媛赵继凯邢方舟张吉强李巍
第三军医大学:护理学院野战护理学教研室,基础医学部神经生物学教研室;西南大学生命科学学院
Author(s):
He Li Zhao Yangang Qiu Linli Zhang Yuanyuan Zhao Jikai Xing Fangzhou Zhang Jiqiang Li Wei

Department of Military Nursing, School of Nursing, Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038; School of Life Sciences, Southwest University, Chongqing, 400715, China

关键词:
雌激素海马雌激素&beta受体actin细胞骨架SRC-1
Keywords:
estrogen hippocampus estrogen receptor beta actin cytoskeleton steroid receptor coactivator-1
分类号:
R-332; R338.26; R345.791
文献标志码:
A
摘要:

目的        初步探讨雌激素β受体(estrogen receptor beta, ERβ)在小鼠海马不同发育时期的表达以及ERβ活性改变对actin细胞骨架聚合调节蛋白表达的影响及其机制。方法      C57BL/6小鼠按性别和出生后时间[出生后0(P0)、7(P7)、14(P14)、28(P28)、56 d(P56)]分为10组,用免疫组化和Western blot检测小鼠海马中ERβ的表达变化。另取动情间期成年雌性C57BL/6小鼠用随机数字表法分为5组:对照组和腹腔注射ERβ活性抑制剂PHTPP(100 μg/kg)1、3、5、7 d组。再取同种小鼠用随机数字表法分为5组:假手术对照组,卵巢切除 (ovariectomy, OVX) 组,OVX 1周后再皮下注射ERβ活性激动剂DPN 1.25、2.5、5.0 mg/kg组,均连续注射1周。用免疫组织化学方法检测海马类固醇受体辅助活化因子-1 (steroid receptor coactivator-1, SRC-1)的表达,用Western blot检测海马Rictor、磷酸化蛋白激酶 B(phosphoprotein kinase B, p-Akt)、Profilin-1、磷酸化cofilin (phospho-cofilin ser3, p-cofilin)和SRC-1的蛋白水平表达变化。结果      免疫组化和Western blot检测发现,ERβ在雌、雄小鼠海马P0组表达较高,P7组和P14组表达较P0组降低(P<0.05),而P28组和P56组ERβ表达较P7组和P14组升高(P<0.01)。用PHTPP抑制ERβ活性导致Rictor、p-Akt、Profilin-1、p-cofilin和SRC-1的表达下降(P<0.05),而OVX导致上述分子表达下降可被ERβ活性激动剂DPN逆转(P<0.05)。结论      从出生到成年小鼠海马内ERβ的表达呈U型变化。调节ERβ活性可诱导actin细胞骨架聚合调节蛋白及SRC-1的表达发生改变,提示ERβ可能通过SRC-1/Rictor/p-Akt途径对actin细胞骨架聚合状态进行调节并最终介导雌激素(estrogens, E2)对学习记忆的调节。

Abstract:

Objective      To detect the expression profile of estrogen receptor β (ERβ) in the postnatal hippocampus of male and female mice during development and investigate the underlying mechanism of ERβ activity on the regulation of actin polymerization related proteins. Methods         C57BL/6 mice were divided into 10 groups by their sex and postnatal days (P0, P7, P4, P28 and P56). The expression of ERβ in the hippocampus was determined with immunohistochemical assay and Western blotting. Then adult female diestrus C57BL/6 mice were randomly divided into 5 groups, that is, control and PHTPP (ERβ inhibitor) treatment groups (1, 3, 5 and 7 d). DMSO and PHTPP (100 μg/kg) were intra-peritoneally injected. Then another 5 groups were treated respectively with DMSO, ovariectomy (OVX), and DPN (ERβ activator, 1.25, 2.5 or 5.0 mg/kg) subcutaneously in 1 week after OVX. Immunohistochemical assay was used to examine the expression of steroid receptor coactivator-1 (SRC-1), and Western blotting was employed to detect the expression of hippocampal Rictor, phospho-protein kinase B (p-Akt), Profilin-1, phospho-cofilin ser3 (p-cofilin) and SRC-1. Results      In both male and female hippocampus, high ERβ level was found at P0, then the level was decreased to the lower level at P7 and P14 (P<0.05 compared with P0) and increased to the higher level at P28 and P56 (P<0.01 compared with P7 and P14). In the adult mice after 7 days’ PHTPP treatment, the expression levels of Rictor, p-Akt, Profilin-1, p-cofilin and SRC-1 were significantly decreased (P<0.05). On the contrary, these levels was decreased dramatically after OVX but were significantly rescued by the 7 days’ DPN treatment (P<0.05). Conclusion      Postnatal ERβ profile is in a U-shape trend in the hippocampus of mice. Manipulation of ERβ activity results in the alternations of SRC-1 and actin cytoskeleton polymerization. This indicates ERβ may mediate estrogens regulation on learning and memory through SRC-1/Rictor/p-Akt pathway.

参考文献/References:

[1]Pereira L M, Bastos C P, de Souza J M, et al. Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α[J]. Neurobiol Learn Mem, 2014, 114: 1-9. DOI:10.1016/j.nlm.2014.04.001.
[2]Woolley C S, McEwen B S. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat[J]. J Comp Neurol, 1993, 336(2): 293-306. DOI:10.1002/cne. 903360210.
[3]Woolley C S, Gould E, Frankfurt M, et al. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons[J]. J Neurosci, 1990, 10(12): 4035-4039. DOI:10.1016/0006-8993(90)90778-a.
[4]Vierk R, Glassmeier G, Zhou L, et al. Aromatase inhibition abolishes LTP generation in female but not in male mice[J]. J Neurosci, 2012, 32(24): 8116-8126. DOI:10.1523/ JNEUROSCI.531911.2012.
[5]Prange-Kiel J, Fester L, Zhou L, et al. Inhibition of hippocampal estrogen synthesis causes regionspecific downregulation of synaptic protein expression in hippocampal neurons[J]. Hippocampus, 2006, 16(5): 464-471. DOI:10.1002/hipo.20173.
[6]Bernardino R L, Alves M G, Silva J, et al. Expression of Estrogen Receptors Alpha (ER-α), Beta (ER-β), and G Protein-Coupled Receptor 30 (GPR30) in Testicular Tissue of Men with Klinefelter Syndrome[J]. Horm Metab Res, 2016, 48(6): 413-415. DOI:10.1055/s-0042-105151.
[7]Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor[J]. FEBS Lett, 1996, 392(1): 49-53. DOI:10.1016/0014-5793(96)00782x.
[8]Zhang J Q, Cai W Q, Zhou D S, et al. Distribution and differences of estrogen receptor beta immunoreactivity in the brain of adult male and female rats[J]. Brain Res, 2002, 935(1/2): 73-80. DOI:10.1016/s0006-8993(02)02460-5.
[9]Liu F, Day M, Mu-iz LC, et al. Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory[J]. Nat Neurosci, 2008, 11(3): 334-343. DOI:10.1038/nn2057.
[10]Fukazawa Y, Saitoh Y, Ozawa F, et al. Hippocampal LTP is accompanied by enhanced Factin content within the dendritic spine that is essential for late LTP maintenance in vivo[J]. Neuron, 2003, 38(3): 447-460. DOI:10.1016/s0896-6273(03)00206-x.
[11]Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell, 2003, 112(4): 453-465. DOI:10.1016/s0092-8674(03)00120-x.
[12]Kusch A, Schmidt M, Gürgen D, et al. 17Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling[J]. PLoS One, 2015, 10(4): e0123385. DOI:10.1371/journal.pone.0123385.
[13]Kram-r E A, Chen L Y, Brandon N J, et al. Cytoskeletal changes underlie estrogen’s acute effects on synaptic transmission and plasticity[J]. J Neurosci, 2009, 29(41): 12982-12993. DOI:10.1523/JNEUROSCI.3059-09.2009.
[14]Haas E, Meyer M, Schurr U, et al. Differential effects of 17beta-estradiol on function and expression of estrogen receptor alpha, estrogen receptor beta, and GPR30 in arteries and veins of patients with atherosclerosis[J]. Hypertension, 2007, 49(6): 1358-1363. DOI:10.1161/HYPERTENSIONAHA.107.089995.
[15]Fan X, Warner M, Gustafsson J A. Estrogen receptor beta expression in the embryonic brain regulates development of calretinin-immunoreactive GABAergic interneurons[J]. Proc Natl Acad Sci U S A, 2006, 103(51): 19338-19343. DOI:10.1073/pnas.0609663103.
[16]Ivanova T, Beyer C. Ontogenetic expression and sex differences of aromatase and estrogen receptoralpha/beta mRNA in the mouse hippocampus[J]. Cell Tissue Res, 2000, 300(2): 231-237. DOI:10.1007/s004410000199.
[17]Zuloaga D G, Zuloaga K L, Hinds L R, et al. Estrogen receptor β expression in the mouse forebrain: age and sex differences[J]. J Comp Neurol, 2014, 522(2): 358-371. DOI:10.1002/cne.23400.
[18]Zhou Q, Xiao M, Nicoll R A. Contribution of cytoskeleton to the internalization of AMPA receptors[J]. Proc Natl Acad Sci U S A, 2001,98(3): 1261-1266. DOI:10.1073/pnas.031573798.
[19]Yun S P, Ryu J M, Kim M O, et al. Rapid actions of plasma membrane estrogen receptors regulate motility of mouse embryonic stem cells through a profilin-1/cofilin-1-directed kinase signaling pathway[J]. Mol Endocrinol, 2012, 26(8): 1291-1303. DOI:10.1210/me.20121002.
[20]Huang W, Zhu P J, Zhang S, et al. mTORC2 controls actin polymerization required for consolidation of long-term memory[J]. Nat Neurosci, 2013, 16(4): 441-448. DOI:10.1038/nn.3351.
[21]Briz V, Baudry M. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms[J]. Front Endocrinol (Lausanne), 2014, 5: 22. DOI:10.3389/fendo.2014.00022.
[22]Hirahara Y, Matsuda K I, Liu Y F, et al. 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes[J]. Neuroscience, 2013,235:187-199. DOI:10.1016/j.neuroscience.2012.12.070.
[23]Grassi D, Lagunas N, Amorim M, et al. Role of oestrogen receptors on the modulation of NADPH-diaphorase-positive cell number in supraoptic and paraventricular nuclei of ovariectomised female rats[J]. J Neuroendocrinol, 2013, 25(3): 244-250. DOI:10.1111/j.13652826.2012.02387.x.
[24]Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors[J]. Cell, 1996, 85(3): 403-414. DOI:10.1016/s00928674(00)81118-6.
[25]Bian C, Zhang D, Guo Q, et al. Localization and sex-difference of steroid receptor coactivator1 immunoreactivities in the brain of adult female and male mice[J]. Steroids, 2011, 76(3): 269-279. DOI:10.1016/ j.steroids.2010.11.009.
[26]Zhao Y, Yu Y, Zhang Y, et al. Letrozole regulates actin cytoskeleton polymerization dynamics in a SRC-1 dependent manner in the hippocampus of mice[J]. J Steroid Biochem Mol Biol, 2017,167:86-97. DOI:10.1016/j.jsbmb.2016.11.013.

相似文献/References:

[1]黎雪梅,况利.抗抑郁药物促进抑郁模型大鼠行为和海马血管内皮细胞生长因子的表达[J].第三军医大学学报,2009,31(05):430.
 LI Xue-mei,KUANG Li.Effect of antidepressant on behavior and vascular endothelial cell growth factor in hippocampus of rat model of depression[J].J Third Mil Med Univ,2009,31(09):430.
[2]李大奇,况利,王敏建.不同电休克方法对抑郁模型大鼠海马干扰素-γ受体表达的影响[J].第三军医大学学报,2007,29(15):1494.
 LI Da-qi,KUANG Li,WANG Min-jian.Effects of electroshock on interferon gamma receptor expression in hippocampus of depressed rats[J].J Third Mil Med Univ,2007,29(09):1494.
[3]耿淼,蒋宁,周文霞,等.当归芍药散对快速老化模型小鼠海马蛋白表达的影响[J].第三军医大学学报,2008,30(06):477.
 GENG Miao,JIANG Ning,ZHOU Wen-xia,et al.Effect of powder of Chinese Angelica and Peony on expressions of hippocampal proteins in senescence accelerated mice[J].J Third Mil Med Univ,2008,30(09):477.
[4]陈建,黄缄,高钰琪,等.预缺氧对大鼠低压缺氧性脑损伤保护作用的实验研究[J].第三军医大学学报,2007,29(22):2113.
 CHEN Jian,HUANG Jian,GAO Yu-qi,et al.Protective effects of hypoxia preconditioning on rat brain against hypobaric hypoxia[J].J Third Mil Med Univ,2007,29(09):2113.
[5]吴喜贵,赵延东,阮怀珍.缺氧对大鼠皮层、海马NMDA受体NR1亚单位磷酸化的影响[J].第三军医大学学报,2007,29(18):1742.
 WU Xi-gui,ZHAO Yan-dong,RUAN Huai-zhen.Effect of hypoxia on NR1 subunit of NMDA receptor in rat cortex and hippocampus[J].J Third Mil Med Univ,2007,29(09):1742.
[6]耿明英,程远,许民辉,等.伽玛刀对红藻氨酸模型大鼠海马形态学及苔藓纤维变化的影响[J].第三军医大学学报,2007,29(10):959.
 GENG Ming-ying,CHENG Yuan,XU Min-hui,et al.Effects of gamma knife on morphological changes of hippocampal formation and mossy fiber sprouting in epileptic rats induced by kainic acid[J].J Third Mil Med Univ,2007,29(09):959.
[7]赵延东,程赛宇,张金海,等.低压缺氧对大鼠海马CA1区神经元P2X受体表达的影响[J].第三军医大学学报,2006,28(23):2302.
[8]鲁利群,赵聪敏,蒲昭霞.生长相关蛋白在缺氧缺血性脑损伤新生大鼠海马中的表达变化[J].第三军医大学学报,2006,28(21):2160.
[9]张映琦,廖维宏,迟路湘,等.癫痫状态大鼠海马GABA、GABAA受体α5亚单位表达的动态变化[J].第三军医大学学报,2006,28(20):2047.
[10]周红梅,孔祥英,何念海,等.高压氧对缺血缺氧性脑损伤幼鼠海马超微结构及主动回避反应的影响[J].第三军医大学学报,2006,28(19):1973.

更新日期/Last Update: 2017-05-05