[1]刘超,蹇朝,孟永胜,等.慢性缺氧诱导小鼠心肌细胞自噬及其机制[J].第三军医大学学报,2017,39(09):859-864.
 Liu Chao,Jian Zhao,Meng Yongsheng,et al.Chronic hypoxia induces myocardial autophagy in mice[J].J Third Mil Med Univ,2017,39(09):859-864.
点击复制

慢性缺氧诱导小鼠心肌细胞自噬及其机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第09期
页码:
859-864
栏目:
基础医学
出版日期:
2017-05-15

文章信息/Info

Title:
Chronic hypoxia induces myocardial autophagy in mice
作者:
刘超蹇朝孟永胜彭文林朱昀姜云瀚罗桂平唐富琴肖颖彬
第三军医大学新桥医院全军心血管外科研究所
Author(s):
Liu Chao Jian Zhao Meng Yongsheng Peng Wenlin Zhu Yun Jiang Yunhan Luo Guiping Tang Fuqin Xiao Yingbin

Institute of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

关键词:
心肌细胞自噬慢性缺氧AMPK&alpha2心肌
Keywords:
myocardial autophagy chronic hypoxia AMPK&alpha2  myocardium
分类号:
R322.11; R331.31; R364.4
文献标志码:
A
摘要:

目的      观察慢性缺氧对小鼠心肌细胞自噬水平的影响,并初步探讨AMPKα2敲除对该过程的作用。方法      采用野生型与AMPKα2-/-雄性C57小鼠均分为野生型常氧组、野生型缺氧组、敲除型常氧组和敲除型缺氧组(n=10)。常氧组于空气环境中饲养,缺氧组于10% O2的低氧舱内饲养。4周后野生型小鼠取静脉血标本,测红细胞及血红蛋白水平;取心脏标本用Western blot检测AMPKα2及自噬相关蛋白LC3-Ⅱ/LC3-Ⅰ比值与p62的变化,用免疫荧光染色法检测心肌冰冻切片LC3变化。敲除型小鼠取心脏标本用Western blot检测心肌组织LC3-Ⅱ/LC3-Ⅰ比值变化。结果      ①野生型小鼠中,与常氧组比较,缺氧组红细胞与血红蛋白水平显著增加[红细胞:(9.33±0.15)×1012/L vs (12.78±0.66)×1012/L,P<0.05;血红蛋白:(135±3)g/L vs (192±4)g/L,P<0.05];②野生型小鼠中,与常氧组相比,缺氧组心肌组织LC3Ⅱ/LC3Ⅰ比值显著增加[(0.49±0.29) vs (1.70±0.24),P<0.05];p62表达明显降低[(1.32±0.57) vs (0.71±0.19),P<0.05];免疫荧光结果显示,缺氧组心肌组织LC3荧光较常氧组增多;③在常氧条件下,与野生型小鼠比较,AMPKα2-/-小鼠心肌组织LC3=Ⅱ/LC3=Ⅰ比值降低,但差异无统计学意义[(0.78±0.08) vs (0.73±0.34),P>0.05];在缺氧条件下,与野生型小鼠比较,AMPKα2-/-小鼠心肌组织LC3=Ⅱ/LC3=Ⅰ比值显著降低[(2.08±0.72) vs (1.01±0.21),P<0.05];④野生型小鼠中,与常氧组比较,缺氧组AMPKα2蛋白表达水平并无显著增加[(1.14±0.13) vs (1.25±0.19),P>0.05]。结论      慢性缺氧可能通过AMPKα2依赖的途径增强心肌细胞自噬,该自噬可能是心肌细胞对慢性缺氧的适应机制。

Abstract:

Objective       To determine the effect of chronic hypoxia on myocardial autophagy in mice and investigate the role of AMPKα2 knockout during the process.  Methods      Wild-type (WT) and AMPKα2 knockout (KO) male C57 mice were randomly divided into WT normoxic group, WT hypoxic group, KO normoxic group and KO hypoxic group, with 10 mice in each group. The normoxic groups were kept in normoxic condition, while the hypoxic groups were kept in a hypoxic chamber with 10% O2 for 4 weeks. Then the blood samples of WT mice were collected for detecting the levels of red blood cells and hemoglobins. Heart samples of WT mice were harvested to detect the expression of AMPKα2 and p62 and ratio of autophagy-related protein LC3-Ⅱ/LC3-Ⅰ by Western blotting. The change of LC3 level was also detected by immunofluorescence staining in frozen sections. Cardiac samples of AMPKα2-/- mice were used to detect the LC3-Ⅱ/LC3-Ⅰ ratio by Western blotting. Results      ① In WT mice, the levels of red blood cells and hemoglobins in the hypoxic group were increased significantly than those in  the normoxic group [(9.33±0.15)×1012/L vs (12.78±0.66)×1012/L, P<0.05; 135±3 vs 192±4 g/L, P<0.05]. ② In WT mice, the ratio of LC3-Ⅱ/LC3-Ⅰwas increased significantly (0.49±0.29 vs 1.70±0.24, P<0.05), the p62 expression level was decreased obviously, the relative brightness of p62 was reduced (1.32±0.57 vs 0.71±0.19, P<0.05), and the fluorescence intensity of LC3 in the myocardium was increased in the hypoxic group than  the normoxic group. ③ In normoxic conditions, the LC3-Ⅱ/LC3-Ⅰ ratio was lower in the myocardium, but not significantly (0.78±0.08 vs 0.73±0.34, P>0.05) in AMPKα2 -/- mice than  the WT mice. While in hypoxic conditions, the ratio was significantly lower in the myocardium of AMPKα2 -/- mice than the WT mice (2.08±0.72 vs 1.01±0.21, P<0.05). ④ In WT mice, the expression level of AMPKα2 proteins was not significantly increased in the hypoxic group than the normoxic group (1.14±0.12 vs 1.25±0.19, P>0.05).  Conclusion       Chronic hypoxia may enhance autophagy in cardiomyocytes by AMPKα2-dependent pathway, and the autophagy may be the adaptation mechanism of cardiomyocytes to chronic hypoxic conditions.

参考文献/References:

[1]Xiao Y B,Jian Z. Research progress on myocardial adaptation to chronic hypoxia[J]. Med J West China,2015, 27(3):321-322. DOI:10.3969/j.issn.1672-3511.2015.03.001.
[2]Yoshii S R,Mizushima N. Autophagy machinery in the context of mammalian mitophagy[J]. Biochim Biophys Acta,2015,1853(10PtB):2797-2801. DOI: 10.1016/j.bbamcr.2015.01.013.
[3]Martinez J,Malireddi R K,Lu Q,et al. Molecular characteri-zation of LC3-associated phagocytosis (LAP) reveals distinct roles for Rubicon,NOX2,and autophagy proteins[J]. Nat Cell Biol, 2015,17(7):893-906. DOI: 10.1038/ncb 3192.
[4]Jiang P,Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells[J]. Methods,2015,75:13-18. DOI: 10.1016/j.ymeth.2014.11.021.
[5]Aparicio I M,Martin Mu-oz P,Salido G M,et al. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions[J]. Animal, 2016, 10(7): 1182-1191. DOI: 10.1017/S1751731116000240.
[6]洪毅,蹇朝,肖颖彬.自噬体在紫绀型先天性心脏病患儿心肌中的表达[J].第三军医大学学报,2009,31(23):2351-2354. DOI:10.3321/j.issn:1000-5404.2009.23.016.
Hong Y,Jian Z,Xiao Y B. Upregulated autophagy in myocardium of infants with cyanotic congenital heart defects[J]. J Third Mil Med Univ, 2009, 31(23):2351-2354. DOI:10.3321/j.issn:10005404.2009.23.016.
[7]李畑波, 鞠胜杰, 蹇朝, 等. 腺苷酸激活蛋白激酶激活参与促进慢性缺氧时心肌细胞存活[J]. 第三军医大学学报, 2015, 37(8): 797-803. DOI:10.16016/j.1000-5404.201411089.
Li T B,Ju S J,Jian Z,et al. AMPK activation participates in promoting myocardial cell survival in chronic hypoxia[J]. J Third Mil Med Univ,2015, 37(8):797-803. DOI: 10.16016/j.10005404.201411089.
[8]鞠胜杰,李畑波,蹇朝,等. NEDD4调控AMPK活性参与心肌细胞慢性缺氧适应的研究[J]. 第三军医大学学报, 2015, 37(9): 891-895. DOI:10.16016/j.1000-5404. 201412262.
Ju S J, Li T B, Jian Z,et al. NEDD4 participates in myocardial adaptation to chronic hypoxia by regulating AMPK[J]. J Third Mil Med Univ, 2015,37(9):891-895. DOI:10.16016/j.10005404.201412262.
[9]Viollet B,Andreelli F,J-rgensen S B,et al. The AMPactivated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity[J]. J Clin Invest, 2003, 111(1):91-98. DOI:10.1172/JCI16567.
[10]Nishida K, Yamaguchi O, Otsu K. Degradation systems in heart failure[J]. J Mol Cell Cardiol,2015,84(5089):212-222. DOI: 10.1016/j.yjmcc.2015.05.004.
[11]Lee E, Koo Y, Ng A, et al. Autophagy is essential for cardiac morphogenesis during vertebrate development[J]. Autophagy, 2014, 10(4):572-587. DOI: 10.4161/auto.27649.
[12]Coughlan K A, Valentine R J, Sudit B S,et al. PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells[J]. J Biol Chem, 2016, 291(11):5664-5675. DOI:10.1074/jbc.M115.696849.
[13]Amaral M E, Ribeiro R A, Vanzela E C, et al. Reduced AMPKα2 protein expression restores glucoseinduced insulin secretion in islets from calorie-restricted rats[J]. Int J Exp Pathol,2016,97(1):50-55. DOI:10.1111/iep.12165.
[14]Zhang P,Hu X,Xu X,et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressureoverloadinduced left ventricular hypertrophy and dysfunction in mice[J]. Hypertension, 2008,52(5):918-924. DOI:10.1161/HYPERTENSIONAHA.108.114702.
[15]Slámová K,Papou-ek F,Janovská P, et al. Adverse effects of AMP-activated protein kinase alpha 2subunit deletion and high-fat diet on heart function and ischemic tolerance in aged female mice[J]. Physiol Res,2016,65(1):33-42.
[16]Wu H,Chen Q. Hypoxia activation of mitophagy and its role in disease pathogenesis[J]. Antioxid Redox Signal, 2015,22(12):1032-1046. DOI: 10.1089/ars.2014.6204.

相似文献/References:

[1]张永,肖颖彬.紫绀型先天性心脏病患儿血清铁及总铁结合力的变化及意义[J].第三军医大学学报,2012,34(10):971.
 Zhang Yong,Xiao Yingbin.Changes of serum iron and total iron-binding capacity of infants with cyanotic congenital heart disease[J].J Third Mil Med Univ,2012,34(09):971.
[2]周胜凯,秦川,陈林,等.EPO对慢性缺氧心肌细胞线粒体生物合成的影响[J].第三军医大学学报,2013,35(12):1192.
 Zhou Shengkai,Qin Chuan,Chen Lin,et al.Effect of erythropoietin on mitochondrial biogenesis in cardiomyocytes during chronic hypoxia in vitro[J].J Third Mil Med Univ,2013,35(09):1192.
[3]李畑波,鞠胜杰,蹇朝,等.腺苷酸激活蛋白激酶激活参与促进慢性缺氧时心肌细胞存活[J].第三军医大学学报,2015,37(08 ):797.
 Li Tianbo,Ju Shengjie,Jian Zhao,et al.AMPK activation participates in promoting myocardial cell survival in chronic hypoxia[J].J Third Mil Med Univ,2015,37(09):797.
[4]王细文,仇玉福,陈意生,等.慢性缺氧大鼠右心房的超微病理变化及血浆ANF含量改变的实验研究[J].第三军医大学学报,2000,22(03):0.[doi:10.16016/j.1000-5404.2000.03.026 ]
 WANG Xi wen,QIU Yu fu,CHEN Yi sheng.[J].J Third Mil Med Univ,2000,22(09):0.[doi:10.16016/j.1000-5404.2000.03.026 ]
[5]高钰琪,彭鹰,孙秉庸,等.慢性缺氧对大鼠红细胞压积和脆性以及右心室重量的影响[J].第三军医大学学报,1990,12(06):0.[doi:10.16016/j.1000-5404.1990.06.028 ]
[6]谢增柱,王俊元,宋德颂,等.慢性缺氧对肺动脉压和血气的影响[J].第三军医大学学报,1980,02(02):0.[doi:10.16016/j.1000-5404.1980.02.008 ]
[7]第三军医大学三医大高原小组.急性缺氧对肺动脉压的影响[J].第三军医大学学报,1979,01(01):0.[doi:10.16016/j.1000-5404.1979.01.003 ]

更新日期/Last Update: 2017-05-05