[1]罗水莲,陈宇航,石毓君,等.microRNA-1抑制心肌特异性Dicer基因缺失小鼠心脏病理性重构[J].第三军医大学学报,2017,39(14):1469-1475.
 LUO Shuilian,CHEN Yuhang,SHI Yujun,et al.MicroRNA-1 prevents cardiac remodeling in mice with heart failure induced by Dicer ablation[J].J Third Mil Med Univ,2017,39(14):1469-1475.
点击复制

microRNA-1抑制心肌特异性Dicer基因缺失小鼠心脏病理性重构(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第14期
页码:
1469-1475
栏目:
基础医学
出版日期:
2017-07-30

文章信息/Info

Title:
MicroRNA-1 prevents cardiac remodeling in mice with heart failure induced by Dicer ablation
作者:
罗水莲陈宇航石毓君苏立
重庆医科大学附属第二医院心内科;四川大学华西医院病理研究室
Author(s):
LUO Shuilian CHEN Yuhang SHI Yujun SU Li
Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010; Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
关键词:
Dicer心力衰竭microRNA-1心脏重构
Keywords:
Dicer heart failure microRNA-1 cardiac remodeling
分类号:
R322.11;R394.1;R541.6
文献标志码:
A
摘要:

目的探讨microRNA1(miR1)对他莫昔芬(tamoxifen,TMX)诱导的心肌特异性Dicer基因缺失小鼠心脏结构重构及心功能的影响。方法采用Myh6Cre/Loxp重组系统,通过Dicerloxp/loxp小鼠和Myh6creERT小鼠杂交,获得Myh6creERT/Dicerloxp/loxp小鼠。将18只8周龄雄性Myh6creERT/Dicerloxp/loxp小鼠按随机数字表法分为对照组、模型组、miR1治疗组。采用腹腔注射20 mg/mL TMX溶液(0.1 mL),连续注射5 d,建立心肌特异性Dicer基因缺失心力衰竭小鼠模型,对照组腹腔注射玉米油;模型建立后,miR1治疗组通过尾静脉注射miR1类似物(miR1 mimic)10 nmol/只,对照组给予同等剂量生理盐水,模型组给予miRNA阴性对照试剂,2次/周。1周后,经胸二维超声心动图检测各组小鼠舒张末期左室内径(LVIDd)、收缩末期左室内径(LVIDs)、舒张末期左室容积(EDV)、收缩末期左室容积(ESV)、射血分数(EF)及左室短轴缩短率(FS),然后收集心肌标本,通过HE染色、Masson三色染色及天狼猩红染色观察小鼠心肌结构重构程度;利用原位缺口末端标记法(terminal deoxynucleotidyl transferasemediated dUTP nickend labeling, TUNEL)免疫荧光染色检测心肌组织细胞凋亡情况;通过细胞增殖指标Ki67免疫组化染色评估细胞增殖水平。结果建模后1周,模型组小鼠心功能明显下降,LVIDs及ESV均高于对照组(P<005),EF及FS则显著低于对照组(P<005),miR1治疗后上述指标均较模型组明显改善(P<005)。组织病理学检测结果显示,与对照组相比,模型组小鼠心肌细胞排列紊乱,细胞肥大,炎症细胞浸润明显,心肌纤维化显著,而治疗组小鼠心肌细胞形态正常,无明显肥大和炎性浸润,未见明显的间质纤维化;TUNEL免疫荧光染色及Ki67免疫组化染色结果显示,miR1治疗组小鼠较模型组心肌组织凋亡比例增加(P<005),且存在较明显的细胞增殖(P<005)。结论miR1可抑制TMX诱导的心肌特异性Dicer基因缺失心力衰竭模型中心肌细胞的固有改变和间质的改变,抑制心脏结构重构,维持心功能。

Abstract:

ObjectiveTo investigate the effects of microRNA1 (miR1) on cardiac remodeling and cardiac function following tamoxifen (TMX)induced heart failure in mice with myocardiumspecific Dicer gene deletion. MethodsMyh6Cre/Loxp mice were crossed with Dicerloxp/loxp mice to obtain Myh6creERT/Dicerloxp/loxp mice. Eighteen adult male Myh6creERT/Dicerloxp/loxp mice were randomly divided into control group (corn oil+normal saline), model group (TMX+negative control miRNA) and miR1 treatment group (TMX+miR mimic). For each mouse, TMX(20 mg/mL, 0.1 mL) or corn oil (0.1 mL) were administered by intraperitoneal injection for 5 consecutive days. Normal saline, negative control miRNA or miR1 mimic was injected via the caudal vein twice a week. After 1 week, all the mice underwent echocardiography and the end diastolic left ventricular diameter (LVIDd), end systolic diameter (LVIDs), left ventricular end diastolic volume (EDV), end systolic volume (ESV), ejection fraction (EF) and left ventricular fractional shortening (FS) were measured. The cardiac tissues were then collected for assessment of cardiac remodeling by histological analysis using HE staining, Masson staining and Sirius Red staining. Terminal deoxynucleotide transferasemediated dUTP nickend labeling (TUNEL) assay and Ki67 immunohistochemistry were used to determine the apoptosis and proliferation of the cardiac myocytes. ResultsAt 1 week after the modeling, the cardiac function were significantly decreased in the mice with TMXinduced heart failure, which showed significantly increased LVIDs and ESV (P<005) and lowered EF and FS (P<005) as compared with the control mice. In miR1 treatment group, the cardiac function parameters were all significantly improved (P<005). Histopathological examination of the cardiac tissues of the mice with heart failure revealed irregular cardiomyocyte arrangement, cardiomyocyte hypertrophy, inflammatory cell infiltration, and significant myocardial interstitial fibrosis as compared with the tissues from the control mice. In miR1 treatment group, the cardiomyocytes showed normal morphology without obvious hypertrophy, and no inflammatory cell infiltration or interstitial fibrosis was observed. TUNEL assay and Ki67 immunohistochemistry showed a significantly higher apoptotic rate of myocardocyte (P<005) and more active cardiomyocyte proliferation (P<005) in miR1 treatment group than in the model group. ConclusionmiR1 plays a vital role in the development of heart failure in mice with myocardiumspecific Dicer knockout. MiR1 inhibits cardiac remodeling by regulating the changes of the myocardial and interstitial cells to maintain the cardiac function and prevent the occurrence of heart failure.

参考文献/References:

[1]HU S S, KONG L Z, GAO R L, et al. Outline of the report on cardiovascular disease in China, 2010[J]. Biomed Environ Sci, 2012, 25(3): 251-256. DOI: 10.3967/08953988.2012.03.001.
[2]黄峻.中国心力衰竭流行病学特点和防治策略[J].中华心脏与心律电子杂志, 2015, 3(2): 81-82. DOI: 10.3877/cma.j.issn.20956568.2015.2.002.
HUANG J. The epidemiological characteristics and control strategy of China heart failure[J].Chin J Heart & Heart Rhythm (Electronic Edition), 2015, 3(2): 81-82. DOI: 10.3877/cma.j.issn.20956568.2015.2.002.
[3]TOPKARA V K, MANN D L. Role of microRNAs in cardiac remodeling and heart failure [J]. Cardiovasc Drugs Ther, 2011, 25(2): 171-182. DOI:  10.1007/s1055701162895.
[4]KALOZOUMI G, YACOUB M, SANOUDOU D. MicroRNAs in heart failure:  small molecules with major impact [J]. Glob Cardiol Sci Pract, 2014, 2014(2): 79-102. DOI:  10.5339/gcsp.2014.30. 
[5]KATZ M G, FARGNOLI A S, WILLIAMS R D, et al. MiRNAs as potential molecular targets in heart failure [J]. Future Cardiol, 2014, 10(6): 789-800. DOI:  10.2217/fca.14.64.
[6]RAO P K, TOYAMA Y, CHIANG H R, et al. Loss of cardiac microRNAmediated regulation leads to dilated cardiomyopathy and heart failure [J]. Circ Res, 2009, 105(6): 585-594. DOI:  10.1161/CIRCRESAHA.109.200451. 
[7]TOWNLEYTILSON W H, CALLIS T E, WANG D. MicroRNAs 1, 133, and 206:  critical factors of skeletal and cardiac muscle development, function, and disease [J]. Int J Biochem Cell Biol, 2010, 42(8): 1252-1255. DOI:  10.1016/j.biocel.2009.03.002. 
[8]KARAKIKES I, CHAANINE A H, KANG S, et al.Therapeutic cardiactargeted delivery of miR1 reverses pressure overloadinduced cardiac hypertrophy and attenuates pathological remodeling [J]. J Am Heart Assoc, 2013, 2(2): e000078. DOI:  10.1161/JAHA.113.000078.
[9]DE ROSA S, CURCIO A, INDOLFI C. Emerging Role of MicroRNAs in Cardiovascular Diseases [J]. Circ J, 2014, 78(3): 567-575. Epub 2014 Feb 13.
[10]SCOMPARIN A, POLYAK D, KRIVITSKY A, et al. Achieving successful delivery of oligonucleotidesFrom physicochemical characterization to invivo evaluation [J]. Biotechnol Adv, 2015, 33(6 Pt 3): 1294-1309. DOI:  10.1016/j.biotechadv.2015.04.008. 
[11]GIACCA M, ZACCHIGNA S. Harnessing the microRNA pathway for cardiac regeneration [J]. J Mol Cell Cardiol, 2015, 89(Pt A): 68-74. DOI:  10.1016/j.yjmcc.2015.09.017.
[12]KURA B, YIN C, FRIMMEL K, et al. Changes of microRNA1, 15b and 21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs [J]. Physiol Res, 2016, 65 Suppl 1: S129-137.
[13]BIAN B, YU X F, WANG G Q, et al. Role of miRNA1 in regulating connexin 43 in ischemiareperfusion heart injury: a rat model [J]. Cardiovasc Pathol, 2017, 27: 37-42. DOI:  10.1016/j.carpath.2016.12.006.
[14]HE M, YANG Z, ABDELLATIF M, et al. GTPase Activating Protein (Sh3 Domain) Binding Protein 1 Regulates the Processing of MicroRNA1 during Cardiac Hypertrophy [J]. PLoS One, 2015, 10(12): e0145112. DOI:  10.1371/journal.pone.0145112.
[15]YUAN W, TANG C, ZHU W, et al. CDK6 mediates the effect of attenuation of miR1 on provoking cardiomyocyte hypertrophy [J]. Mol Cell Biochem, 2016, 412(12): 289-296. DOI:  10.1007/s1101001526354. 
[16]TRITSCH E, MALLAT Y, LEFEBVRE F, et al. An SRF/miR1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart [J]. Cardiovasc Res, 2013, 98(3): 372-380. DOI:  10.1093/cvr/cvt042. 
[17]KUMARSWAMY R, LYON A R, VOLKMANN I, et al. SERCA2a gene therapy restores microRNA1 expression in heart failure via an Akt/FoxO3Adependent pathway [J]. Eur Heart J, 2012, 33(9): 1067-1075. DOI:  10.1093/eurheartj/ehs043.
[18]TANG Y, ZHENG J, SUN Y, et al. MicroRNA1 regulates cardiomyocyte apoptosis by targeting Bcl2 [J]. Int Heart J, 2009, 50(3): 377-387.
[19]JAYAWARDENA T M, EGEMNAZAROV B, FINCH E A, et al. MicroRNAmediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes [J]. Circ Res, 2012, 110(11): 1465-1473. DOI:  10.1161/CIRCRESAHA.112.269035.
[20]JAYAWARDENA T M, FINCH E A, ZHANG L, et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function [J]. Circ Res, 2015, 116(3): 418-424. DOI:  10.1161/CIRCRESAHA.116.304510. 
[21]NAKADA Y, CANSECO D C, THET S, et al. Hypoxia induces heart regeneration in adult mice [J]. Nature. 2017, 541(7636): 222-227. DOI:  10.1038/nature20173.

相似文献/References:

[1]王江,田颖,宋熔,等.心力衰竭患者心肌组织ACE2和ACE基因表达[J].第三军医大学学报,2007,29(10):945.
 WANG Jiang,TIAN Ying,SONG Rong,et al.ACE2 and ACE gene expression in myocardium of congestive heart failure[J].J Third Mil Med Univ,2007,29(14):945.
[2]王逵,杨成明,刘国通,等.FKBP12.6基因转染对心衰犬心功能及心肌病理变化的影响[J].第三军医大学学报,2008,30(05):431.
 WANG Kui,YANG Cheng-ming,LIU Guo-tong,et al.Effects of FKBP12.6 gene transfection on cardiac function and myocardium pathomorphology in canine with heart failure[J].J Third Mil Med Univ,2008,30(14):431.
[3]姜大春,张倩,何国祥,等.心动过速性心肌病临床诊断及防治[J].第三军医大学学报,2007,29(10):969.
[4]梅霞,郑向清,田颖,等.福辛普利和美托洛尔对心力衰竭患者心肌重构和血浆神经激素水平的影响[J].第三军医大学学报,2006,28(18):1897.
[5]熊德高,石建,曾安宁.大剂量速尿持续静滴并输入高渗盐水救治严重心力衰竭20例的疗效[J].第三军医大学学报,2006,28(15):1629.
[6]耿召华,刘春燕,李隆贵,等.卡维地洛对心肌梗死后心衰大鼠心肌肌浆网Ca2+泵活性和Ca2+释放通道密度的影响[J].第三军医大学学报,2009,31(06):522.
 GENG Zhao-hua,LIU Chun-yan,LI Long-gui,et al.Carvedilol improves Ca2+ pump activity and Ca2+ release channels density in myocardial sarcoplasmic reticulum of rats with chronic heart failure caused by myocardial infarction[J].J Third Mil Med Univ,2009,31(14):522.
[7]刘启亮,宋耀明,刘超.Neuregulin-1β对阿霉素致心衰大鼠心肌细胞凋亡及bax、bcl-2蛋白表达的干预效应[J].第三军医大学学报,2009,31(24):2448.
 LIU Qi-liang,SONG Yao-ming,LIU Chao.Neuregulin-1β inhibits cardiomyocyte apoptosis in adriamycin-induced rat cardiomyopathy by regulating bcl-2 and bax[J].J Third Mil Med Univ,2009,31(14):2448.
[8]刘春燕,钟杭美,罗昭林,等.冠心病心力衰竭患者血压昼夜节律的变化对心率变异性的影响[J].第三军医大学学报,2010,32(12):1371.
[9]蔡伦安,卢永昕,苏冠华,等.己酮可可碱对慢性心力衰竭患者细胞因子免疫调节及B型利钠肽的影响[J].第三军医大学学报,2010,32(17):1902.
[10]赵国忠,陈晨,黄赞维,等.维持性血透患者心力衰竭危险因素的Logistic回归分析[J].第三军医大学学报,2008,30(19):1855.
 ZHAO Guo-zhong,CHEN Chen,HUANG Zan-wei,et al.Logistic regression analysis of risk factors for heart failure in hemodialysis patients[J].J Third Mil Med Univ,2008,30(14):1855.

更新日期/Last Update: 2017-07-24