[1]刘航,汪伟民,张剑波,等.HIF-2α-VEGF-Notch信号通路在高强度聚焦超声不完全消融后肝癌中的作用[J].第三军医大学学报,2017,39(07):608-615.
 Liu Hang,Wang Weimin,Zhang Jianbo,et al.Role of HIF-2α-VEGF-Notch in angiogenesis of residual hepatocellular carcinoma after high intensity focused ultrasound[J].J Third Mil Med Univ,2017,39(07):608-615.
点击复制

HIF-2α-VEGF-Notch信号通路在高强度聚焦超声不完全消融后肝癌中的作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第07期
页码:
608-615
栏目:
基础医学
出版日期:
2017-04-15

文章信息/Info

Title:
Role of HIF-2α-VEGF-Notch in angiogenesis of residual hepatocellular carcinoma after high intensity focused ultrasound
作者:
刘航汪伟民张剑波顾海涛王继见周世骥
重庆医科大学附属第二医院:胃肠外科,肝胆外科
Author(s):
Liu Hang Wang Weimin Zhang Jianbo Gu Haitao Wang Jijian Zhou Shiji

Department of Gastrointestinal Surgery, Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

关键词:
高强度聚焦超声残余癌肝癌HIF-2&alphaVEGF
Keywords:
high intensity focused ultrasound residual carcinoma hepatocellular carcinomaHIF-2&alphaVEGF
分类号:
R454.2;R730.51;R735.7
文献标志码:
A
摘要:

目的      探讨HIF-1α、HIF-2α、VEGF、Notch等基因在高强度聚焦超声不完全消融肝癌血管新生中的表达及其作用。方法     实验共分5组,HIFU残留肝癌细胞亚系为实验组,未处理肝癌细胞为对照组,转染HIF-2α 基因沉默重组慢病毒残留肝癌细胞为抑制HIF-2α组,转染VEGF基因沉默重组慢病毒残留肝癌细胞为抑制VEGF组,转染空载慢病毒残留肝癌细胞为空载组。免疫荧光检测实验组与对照组的VEGF表达。低氧(1%O2)处理实验组与对照组细胞0、6、12、24 h,荧光定量PCR和Western blot检测HIF-1α、HIF-2α、VEGF mRNA和蛋白表达水平。荧光定量PCR和Western blot检测各组细胞HIF-1α、HIF-2α、VEGF、Notch、DLL4 mRNA和蛋白表达水平。结果     VEGF蛋白在对照组与实验组细胞中均有表达。HIF-1α在低氧处理12 h达到顶峰,随后下降,而HIF-2α、VEGF随着低氧处理时间增加而呈上升趋势,且实验组HIF-2α、VEGF表达较对照组明显增高(P<0.05)。转染慢病毒后,抑制HIF-2α组HIF-2α、VEGF mRNA和蛋白表达均较实验组显著下调(P<0.05),抑制VEGF组VEGF、Notch、DLL4 mRNA和蛋白表达均较实验组显著下调(P<0.05),实验组HIF-2α、VEGF、Notch、DLL4 mRNA和蛋白表达均高于对照组(P<0.05)。结论      HIF-2α-VEGF-Notch信号通路参与调控高强度聚焦超声残余肝癌血管新生。

Abstract:

Objective     To determine the expression of hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, vascular endothelium growth factor (VEGF) and Notch in the residual hepatocellular carcinoma (HCC) after high intensity focused ultrasound (HIFU). Methods      The cell subline was established based on HCC SMMC7721 cells survived from HIFU treatment. Immunofluorescence staining was used to measure the expression of VEGF in normal control cells and HIFU treated cells. Real-time PCR and Western blotting were used to measure the expression of HIF-1α, HIF-2α and VEGF at mRNA and protein levels at 0, 6, 12 and 24 h under hypoxic condition (1% O2) in both treated and control cells. Then, the treated cells was infected with lentiviral vectors LV-shRNA-VEGF, LV-shRNA-HIF-2α and LV-shRNA-NC respectively, and the mRNA and protein expression of VEGF, HIF-2α, Notch, and DLL4 was quantified by real-time PCR and Western blotting.   Results     The VEGF protein was mainly expressed in the cytoplasm in the treated and control cells. The expression of HIF-1α in the treated and control cells reached peak in 12 h after hypoxic treatment and then decreased, while the expression of HIF-2α and VEGF was increased with the time elapse (P<0.05). The mRNA and protein expression of HIF-2α and VEGF was significantly lower in HIF-2α modulated cells than  the treated cells (P<0.05), and that of VEGF, Notch and DLL4 was also decreased in the VEGF modulated cells than that in the treated cells (P<0.05). The levels of HIF-2α, VEGF, Notch and DLL4 were significantly higher in the treated cells than control cells (P<0.05). Conclusion     HIF-2α-VEGF-Notch signaling pathway is involved in the regulation of angiogenesis in residual hepatocellular carcinoma after HIFU treatment.

参考文献/References:

[1]张映林, 陈蛟, 吴涯昆,等. 高强度聚焦超声不完全消融对体外培养肝癌细胞的影响[J]. 第三军医大学学报, 2015, 37(3):261-266. DOI:10.16016/j.1000-5404.201408161
Zhang Y L,Chen J,Wu Y K,et al.Effect of insufficient ablation of high intensity focused ultrasound on hepatoma cells in vitro[J].J Third Mil Med Univ,2015,37(3):261-266. DOI:10.16016/j.10005404.201408161
[2]Wu L, Fu Z, Zhou S, et al. HIF-1α and HIF-2α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after highintensity focused ultrasound ablation[J]. PLoS ONE, 2014, 9(2): e88913. DOI:10.1371/journal.pone.0088913
[3]Bao S, Wu Q, Sathornsumetee S, et al. Stem celllike glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006, 66(16): 7843-7848. DOI:10.1158/0008-5472.CAN-06-1010
[4]Carmeliet P, Dor Y, Herbert J M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis[J]. Nature, 1998, 394(6692): 485-490. DOI:10.1038/28867
[5]Kaseb A O, Hanbali A, Cotant M, et al. Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature[J]. Cancer, 2009, 115(21): 4895-4906. DOI:10.1002/cncr.24537
[6]Kaseb A O, Morris J S, Hassan M M, et al. Clinical and prognostic implications of plasma insulin-like growth factor-1 and vascular endothelial growth factor in patients with hepatocellular carcinoma[J]. J Clin Oncol, 2011, 29(29): 3892-3899. DOI:10.1200/JCO.2011.36.0636
[7]Zhao J, Du F, Shen G, et al. The role of hypoxia-inducible factor-2 in digestive system cancers[J]. Cell Death Dis, 2015, 6: e1600. DOI:10.1038/cddis.2014.565
[8]Boreddy S R, Sahu R P, Srivastava S K. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3[J]. PLoS ONE, 2011, 6(10): e25799. DOI:10.1371/journal.pone.0025799
[9]Holmquist-Mengelbier L, Fredlund E, L-fstedt T, et al. Recruitment of HIF-1alpha and HIF2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype[J]. Cancer Cell, 2006, 10(5): 413-423. DOI:10.1016/j.ccr.2006.08.026
[10]Benedito R, Rocha S F, Woeste M, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling[J]. Nature, 2012, 484(7392): 110-114. DOI:10.1038/nature10908
[11]Torre L A, Bray F, Siegel R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. DOI:10.3322/caac.21262
[12]Corey K E, Pratt D S. Current status of therapy for hepatocellular carcinoma[J]. Therap Adv Gastroenterol, 2009, 2(1): 45-57. DOI:10.1177/1756283X08100328
[13]Chen L P, Li N, Ye H. The effect of high intensity focused ultrasound on vascular endothelial growth factor and microvessel density in rabbit V-X2 hepatocellular carcinoma models[J]. Hepatogastroenterology, 2013, 60(121): 136-139. DOI:10.5754/hge12469
[14]Wouters B G, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer[J]. Nat Rev Cancer, 2008, 8(11): 851-864. DOI:10.1038/nrc2501
[15]Xia G, Kageyama Y, Hayashi T, et al. Regulation of vascular endothelial growth factor transcription by endothelial PAS domain protein 1 (EPAS1) and possible involvement of EPAS1 in the angiogenesis of renal cell carcinoma[J]. Cancer, 2001, 91(8): 1429-1436
[16]Akeno N, CzyzykKrzeska M F, Gross T S, et al. Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxiainducible factor2alpha[J]. Endocrinology, 2001, 142(2): 959-962. DOI:10.1210/endo.142.2.8112
[17]Rankin E B, Rha J, Unger T L, et al. Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice[J]. Oncogene, 2008, 27(40): 5354-5358. DOI:10.1038/onc.2008.160
[18]Nijjar S S, Wallace L, Crosby H A, et al. Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects[J]. Am J Pathol, 2002, 160(5): 1695-1703. DOI:10.1016/S0002-9440(10)611169
[19]Liu Z, Fan F, Wang A, et al. Dll4Notch signaling in regulation of tumor angiogenesis[J]. J Cancer Res Clin Oncol, 2014, 140(4): 525-536. DOI:10.1007/s00432-013-1534-x
[20]Hellstrm M, Phng L K, Hofmann J J, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis[J]. Nature, 2007, 445(7129): 776-780. DOI:10.1038/nature05571
[21]Lobov I B, Renard R A, Papadopoulos N, et al. Deltalike ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting[J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3219-3224. DOI:10.1073/pnas.0611206104

相似文献/References:

[1]张映林,陈蛟,吴涯昆,等.高强度聚焦超声不完全消融对体外培养肝癌细胞的影响[J].第三军医大学学报,2015,37(03):261.
 Zhang Yinglin,Chen Jiao,Wu Yakun,et al.Effect of insufficient ablation of high intensity focused ultrasound on hepatoma cells in vitro[J].J Third Mil Med Univ,2015,37(07):261.

更新日期/Last Update: 2017-04-06