[1]文静,邹建中,王琦,等.脉冲与连续高强度聚焦超声对离体牛肝表面消融的效果比较[J].第三军医大学学报,2017,39(08):749-754.
 Wen Jing,Zou Jianzhong,Wang Qi,et al.Efficacy of surface ablation with continuous versus pulsed high-intensity focused ultrasound in isolated bovine liver[J].J Third Mil Med Univ,2017,39(08):749-754.
点击复制

脉冲与连续高强度聚焦超声对离体牛肝表面消融的效果比较(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第08期
页码:
749-754
栏目:
基础医学
出版日期:
2017-04-30

文章信息/Info

Title:
Efficacy of surface ablation with continuous versus pulsed high-intensity focused ultrasound in isolated bovine liver
作者:
文静邹建中王琦马大钊丁晓亚
重庆医科大学生物医学工程学院,省部共建国家重点实验室,重庆市超声医学工程重点实验室,重庆市生物医学工程学重点实验室,重庆市微无创医学协同创新中心
Author(s):
Wen Jing Zou Jianzhong Wang Qi Ma Dazhao Ding Xiaoya

Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Bio-medical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing Medical University, Chongqing, 400016, China

关键词:
脉冲高强度聚焦超声连续高强度聚焦超声表面消融模式
Keywords:
pulsed high-intensity focused ultrasound continuous high intensity focused ultrasound surface ablation mode
分类号:
R312;R454.2;R730.5
文献标志码:
A
摘要:

目的      比较脉冲高强度聚焦超声(pulsed highintensity focused ultrasound,PHIFU)与连续高强度聚焦超声(continuous highintensity focused ultrasound,CHIFU)表面消融模式的消融效果,探讨优化HIFU表面消融模式的辐照策略。方法      将40块牛肝组织按辐照方式不同分为A组(30块,PHIFU表面消融模式)和B组(10块,CHIFU表面消融模式),A组再按占空比均分为A1(10%)、A2(30%)、A3(50%)3个亚组,每个亚组10块。B超监控下,A、B组分别采用PHIFU与CHIFU表面消融模式对靶区进行辐照,辐照同时记录靶区内部温度,辐照后观察靶区边缘及其内、外未辐照区损伤情况,测算能效因子并分析温度时间曲线。结果       能效因子:A1组<A2组<A3组<B组。靶区外部:仅B组出现明显热损伤;靶区边缘:各组均可形成封闭隔离带,A1组呈液性坏死,其余组呈凝固性坏死;靶区内部:组织损伤程度随占空比增大而增大。内部温度:除A1组,其余组最高温度均超过60℃。结论      PHIFU较CHIFU在提高消融效率、减少靶区外组织损伤上更有优势。PHIFU表面消融时,调整占空比可改变靶组织内部未辐照区的温升及损伤情况。

Abstract:

Objective     To compare the effect of surface ablation with continuous high-intensity focused ultrasound (CHIFU) and pulsed high=intensity focused ultrasound (PHIFU) and investigate the optimization of surface ablation mode with HIFU. Methods      Forty samples of fresh bovine liver tissues were divided into group A (n=30) and group B (n=10) for surface ablation with PHIFU and CHIFU, respectively. According to the duty cycles, the samples in group A were divided into 3 equal subgroups with duty cycles of 10% (group A1), 30% (group A2), and 50% (group A3). With ultrasonographic guidance, the target areas in the liver tissues were irradiated with PHIFU and CHIFU for surface ablation, and the temperature changes in the geometric center of the target area were recorded. After ablation, tissue damages in the peripheral area and the areas within and outside the target area were observed, the energy efficiency factor (EEF) was calculated, and the temperature-time curve was analyzed. Results     Compared with that in group B, the EEF in the 3 subgroups in group A all reduced significantly (P<0.05), and the reduction became more prominent as the duty cycles increased. Thermal damage outside the target area was observed only in group B. In each group, confined lesions were formed following the ablation, and the irradiated areas showed liquid necrosis in subgroup A1 and coagulation necrosis in the other groups. Within the target area of ablation, the tissue damage was intensified as the duty cycle increased, and the peak temperature in the center of the target area exceeded 60 ℃ in all the groups only with the exception of group A1. Conclusion             Compared with CHIFU surface ablation, PHIFU surface ablation has a greater ablation efficiency and reduces tissue damage outside the target area. In PHIFU peripheral ablation, the temperature and tissue damage of the non-irradiated internal tissue within the target area can be controlled by adjusting the duty cycles.

参考文献/References:

[1]Wu F. High intensity focused ultrasound: A noninvasive therapy for locally advanced pancreatic cancer[J]. World J Gastroenterol,  2014,  20(44):16480-16488. DOI:10.3748/wjg.v20.i44.16480.
[2]Horsman M R, Vaupel P. Pathophysiological basis for the formation of the tumor microenvironment[J]. Front Oncol,  2016,  6: 66. DOI:10.3389/fonc.2016.00066.
[3]Bu R, Yin L, Yang H, et al. Tissue ablation accelerated by peripheral scanning mode with highintensity focused ultrasound: a study on isolated porcine liver perfusion[J]. Ultrasound Med Biol, 2013, 39(8):1410-1419. DOI:10. 1016/j.ultrasmedbio.2013.03.012.
[4]银丽,  邹建中,  伍烽,  等. HIFU三维周边式辐照阻断离体灌注猪肝局部血供的可行性[J]. 中国介入影像与治疗学,  2013,  10(2): 65-68. DOI:10.13929/j.1672-8475.2013.02.016.
Yin L,  Zou J Z,  Wu F,  et al. Feasibility of HIFU 3D-peripheral scanning on blocking the local blood supply of isolated perfused pig liver tissue[J]. Chin J Interv Imaging Ther,  2013,  10(2): 65-68. DOI:10.13929/j.16728475.2013.02.016.
[5]许利劼,  邹建中. 高强度聚焦超声治疗“困难部位”肝癌的安全性及有效性[J]. 临床超声治疗学杂志,  2014,  16(3): 182-184. DOI:10.16245/j.cnki.issn1008-6978.2014.03.041.
Xu L J,Zou J Z.Safety and efficacy of high intensity focused ultrasound therapy for liver cancer in“difficult locations”[J].J Clin Ultrasound in Med,  2014,  16(3):182-184. DOI:10. 16245/j.cnki.issn1008-6978.2014.03.041.
[6]李成海,  王静,  李非,  等. 聚焦超声辐照仿组织体模过程中实时气泡活动及其对损伤的影响[J]. 中国介入影像与治疗学,  2015,  12(7): 437-440. DOI:10.13929/j.1672-8475.2015.07.014.
Li C H,Wang J,Li F, et al.Real-time bubble activities and its effects in process of irradiation by focused ultrasound in tissuemimicking phantom[J]. Chin J Interv Imaging Ther,  2015, 12(7): 437-440. DOI:10.13929/j.1672-8475.2015.07.014.
[7]何炜,  王维,  周平,  等. HIFU非热效应诱导兔肝VX2肿瘤损伤[J]. 中国医学影像技术,  2010,  26(12): 2235-2238.
He W,  Wang W,  Zhou P,  et al. Injury on rabbit hepatic VX2 tumor induced by non-thermal effects of high-intenstiy focused ultrasound[J]. Chin J Med Imaging Techol,  2010,  26(12): 2235-2238.
[8]杨含,  白晋,  刁庆春,  等. 连续高强度聚焦超声与脉冲高强度聚焦超声的生物学效应对比[J]. 中国介入影像与治疗学,  2013,  10(2): 69-72.
Yang H,  Bai J,  Diao Q C,  et al. Comparison on biological effects of continuous and pulse high intensity focused ultrasound[J]. Chin J Interv Imaging Ther,  2013,  10(2): 69-72.
[9]Ma C M,  Chen X,  Cvetkovic D,  et al. An invivo investigation of the therapeutic effect of pulsed focused ultrasound on tumor growth[J]. Med Phys,  2014,  41(12): 122901. DOI:10.1118/1.4901352.
[10]Lee S H,  Jeong D,  Han Y S,  et al. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis[J]. Ann Surg Treat Res,  2015,  89(1):1-8. DOI:10.4174/astr.2015.89.1.1.
[11]Dvorak H F. Tumor Stroma,  Tumor Blood Vessels,  and Antiangiogenesis Therapy[J]. Cancer J,  2015,  21(4): 237-243. DOI:10.1097/PPO.0000000000000124.
[12]Jhaveri N,  Chen T C,  Hofman F M. Tumor vasculature and glioma stem cells: Contributions to glioma progression[J]. Cancer Lett,  2016,  380(2): 545-551.DOI:10.1016/j.canlet.2014.12.028.
[13]Marx V. Tracking metastasis and tricking cancer[J]. Nature,  2013, 494(7435):133-136.DOI:10.1038/494131a.
[14]Peng S,  Zhou P,  He W,  et al. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo[J]. Phys Med Biol,  2016,  61(18): 6754-6769. DOI:10.1088/0031-9155/61/18/6754.
[15]Khokhlova V A,  Fowlkes J B,  Roberts W W,  et al. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications[J]. Int J Hyperthermia,  2015,  31(2):145-162.DOI:10.3109/02656736.2015.1007538.
[16]Zhou Y,  Gao X W. Effect of hydrodynamic cavitation in the tissue erosion by pulsed highintensity focused ultrasound (pHIFU)[J]. Phys Med Biol,  2016,  61(18): 6651-6667. DOI:10.1088/0031-9155/61/18/6651.

更新日期/Last Update: 2017-04-21