[1]李常琼,晁凤蕾,张蕾,等.早期APP/PS1转基因AD模型小鼠海马胆碱能神经元改变的体视学研究[J].第三军医大学学报,2017,39(06):553-559.
 Li Changqiong,Chao Fenglei,Zhang Lei,et al.Stereological study of cholinergic neurons in hippocampus of early-stage APP/PS1 Alzheimer’s disease transgenic mice[J].J Third Mil Med Univ,2017,39(06):553-559.
点击复制

早期APP/PS1转基因AD模型小鼠海马胆碱能神经元改变的体视学研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第06期
页码:
553-559
栏目:
基础医学
出版日期:
2017-03-30

文章信息/Info

Title:
Stereological study of cholinergic neurons in hippocampus of early-stage APP/PS1 Alzheimer’s disease transgenic mice
作者:
李常琼晁凤蕾张蕾唐静蒋林张毅周春妮黄维唐炜李桃赵振华唐勇吴宏
重庆医科大学基础医学院人体解剖与组织胚胎学教研室,干细胞与组织工程研究室
 
Author(s):
Li Changqiong Chao Fenglei Zhang Lei Tang Jing Jiang Lin Zhang Yi Zhou Chunni Huang Wei Tang Wei Li Tao Zhao Zhenghua Tang Yong Wu Hong

Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China

关键词:
胆碱能神经元齿状回APP/PS1双转基因AD模型小鼠体视学
Keywords:
cholinergic neurons dentate gyrus APP/PS1 AD transgenic mice stereology
分类号:
R-332;R322.81;R329.4
文献标志码:
A
摘要:

目的应用体视学方法定量研究APP/PS1双转基因AD模型小鼠海马内胆碱能神经元的早期改变情况。方法Morris水迷宫检测10月龄雌性APP/PS1双转基因AD小鼠(APP/PS1组)和同月龄同窝生雌性野生型小鼠(Wildtype组)的空间学习记忆能力。运用现代体视学方法结合免疫组织化学方法精确定量小鼠海马各亚区的体积和胆碱能神经元的数量。结果APP/PS1组小鼠定位航行实验中逃避潜伏期长于Wildtype组(P<001)。空间探索实验中,APP/PS1组小鼠穿越平台的次数及平台所在象限时间百分比均少于Wildtype组(P=0007、0.041)。APP/PS1组小鼠海马齿状回(dentate gyrus,DG)的体积较Wildtype组缩小(P=0001),而APP/PS1组小鼠海马CA1、CA2/3区的体积较Wildtype组差异无统计学意义(P=0089、0.059)。APP/PS1组小鼠海马DG内胆碱能神经元的数量较Wildtype组显著减少(P=0017),APP/PS1组小鼠海马CA1区、CA2/3区内胆碱能神经元较Wildtype组差异均无统计学意义(P=0076、0.074)。结论早期APP/PS1双转基因AD小鼠海马DG内胆碱能神经元丢失,可能是AD早期出现空间学习记忆能力障碍的重要结构基础之一。

Abstract:

ObjectiveTo investigate the early changes of cholinergic neurons in the hippocampus of APP/PS1 Alzheimer’s disease (AD) transgenic mice.  MethodsTenmonthold female APP/PS1 AD transgenic mice and agematched littermate wildtype female mice were used. The spatial learning and memory abilities were tested with Morris water maze. The quantitative calculations for the volume of hippocampal subregions and the number of the cholinergic neurons in hippocampal subregions were obtained using the stereological methods. ResultsThe escape latency time of the APP/PS1 transgenic group was significantly longer than that of the wildtype group (P<001). There were significant differences in the times of the platform location crosses and the time spending in the target quadrant between the wildtype group and the APP/PS1 transgenic group (P=0007, P=0041). The volume of the dentate gyrus and the number of the cholinergic neurons in the dentate gyrus were significantly reduced in the APP/PS1 transgenic group as compared with the wildtype group (P=0001, P=0017). The volume of the CA1 and CA2/3 sectors and the number of the cholinergic neurons in the CA1 and CA2/3 sectors were not significantly changed in the APP/PS1 transgenic group as compared with the wildtype group (P=0089, P=0059, P=0076, P=0074). ConclusionThe loss of the cholinergic neurons in the dentate gyrus may be one of the morphological bases for the behavior deficits of the earlystage APP/PS1 AD transgenic mouse.

参考文献/References:

[1]Arnold S E, Hyman B T, Flory J, et al. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease[J]. Cereb Cortex, 1991, 1(1): 103-116. DOI:10.1093/cercor/1.1.103
[2]Davies P, Maloney A J. Selective loss of central cholinergic neurons in Alzheimer’s disease[J]. Lancet, 1976, 2(8000): 1403.
[3]McKinney M, Coyle J T, Hedreen J C. Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system[J]. J Comp Neurol, 1983, 217(1): 103-121. DOI:10.1002/cne.902170109
[4]Yi F, CatudioGarrett E, Gábriel R, et al. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation[J]. Front Synaptic Neurosci, 2015, 7:4. DOI:10.3389/fnsyn.2015.00004
[5]Barnes J, Fox N C. The search for early markers of AD: hippocampal atrophy and memory deficits[J]. Int Psychogeriatr, 2014, 26(7): 1065-1066. DOI:10.1017/S104161 0214000623
[6]Whitehouse P J, Price D L, Struble R G, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain[J]. Science, 1982, 215(4537): 1237-1239. DOI:10.1126/science.7058341
[7]DeKosky S T, Ikonomovic M D, Styren S D, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment[J]. Ann Neurol, 2002, 51(2): 145-155. DOI:10.1002/ana.10069
[8]Perez S E, Dar S, Ikonomovic M D, et al. Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse[J]. Neurobiol Dis, 2007, 28(1): 3-15. DOI:10.1016/j.nbd.2007.06.015
[9]Jaffar S, Counts S E, Ma S Y, et al. Neuropathology of mice carrying mutant APP(swe) and/or PS1(M146L) transgenes: alterations in the p75(NTR) cholinergic basal forebrain septohippocampal pathway[J]. Exp Neurol, 2001, 170(2): 227-243. DOI:10.1006/exnr.2001.7710
[10]Ferguson S A, Sarkar S, Schmued L C. Longitudinal behavioral changes in the APP/PS1 transgenic Alzheimer's disease model[J]. Behav Brain Res, 2013, 242: 125-134. DOI:10.1016/j.bbr.2012.12.055
[11]Morris R G, Garrud P, Rawlins J N, et al. Place navigation impaired in rats with hippocampal lesions[J]. Nature, 1982, 297(5868): 681-683. DOI:10.1038/297681a0
[12]Zhao Y Y, Shi X Y, Zhang L, et al. Enriched environment induces higher CNPase positive cells in aged rat hippocampus[J]. Neurosci Lett, 2013, 555: 177-181. DOI:10.1016/j.neulet.2013.09.032
[13]Tang Y, Nyengaard J R, Pakkenberg B, et al. Ageinduced white matter changes in the human brain: a stereological investigation[J]. Neurobiol Aging, 1997, 18(6): 609-615. DOI:10.1016/s01974580(97)001553
[14]Gundersen H J, Jensen E B, Kiêu K, et al. The efficiency of systematic sampling in stereology—reconsidered[J]. J Microsc, 1999, 193(Pt 3): 199-211. DOI:10.1046/j.13652818.1999.00457.x
[15]Tang Y, Janssen W G, Hao J, et al. Estrogen replacement increases spinophilinimmunoreactive spine number in the prefrontal cortex of female rhesus monkeys[J]. Cereb Cortex, 2004, 14(2): 215-223. DOI:10.1093/cercor/bhg121
[16]蒋林. 跑步锻炼对早期APP/PS1转基因AD小鼠海马各亚区内神经元数量的影响[D]. 重庆:重庆医科大学, 2015.
Jiang L. Effects of exercise on the neurons in the hippocampus of early APP/PS1 transgenic mouse[D]. Chongqing:Chongqing Medical University, 2015.
[17]Poisnel G, Dhilly M, Moustié O, et al. PET imaging with [18F]AV45 in an APP/PS121 murine model of amyloid plaque deposition[J]. Neurobiol Aging, 2012, 33(11): 2561-2571. DOI:10.1016/j.neurobiolaging.2011.12.024
[18]Radde R, Bolmont T, Kaeser S A, et al. Abeta42driven cerebral amyloidosis in transgenic mice reveals early and robust pathology[J]. EMBO Rep, 2006, 7(9): 940-946. DOI:10.1038/sj.embor.7400784
[19]张蕾. AD早期行为学、Aβ和白质的改变及跑步锻炼能否延缓这些改变进程的探讨[D]. 重庆:重庆医科大学, 2014 .
Zhang L. The early changes of behavior and amyloid and the white matter in Alzheimer’s disease and the effects of exercise on the behavior and the white matter in Alzheimer’s disease[D]. Chongqing:Chongqing Medical University, 2014.
[20]Cave C B, Squire L R. Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus[J]. Hippocampus, 1991, 1(3): 329-340. DOI:10.1002/hipo.450010323
[21]Wang P N, Liu H C, Lirng J F, et al. Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment[J]. Psychiatry Res, 2009, 171(3): 221-231. DOI:10.1016/j.pscychresns.2008.05.002
[22]晁凤蕾. 跑步锻炼对转基因AD小鼠海马作用的研究[D]. 重庆: 重庆医科大学, 2016.
Chao F L. The effects of running exercise on the hippocampus in APP/PS1 transgenic AD mice[D]. Chongqing: Chongqing Medical University, 2016.
[23]Xu H, Gouras G K, Greenfield J P, et al. Estrogen reduces neuronal generation of Alzheimer betaamyloid peptides[J]. Nat Med, 1998, 4(4): 447-451. DOI:10.1038/nm0498447
[24]Hwang C J, Park M H, Choi M K, et al. Acceleration of amyloidogenesis and memory impairment by estrogen deficiency through NFκB dependent betasecretase activation in presenilin 2 mutant mice[J]. Brain Behav Immun, 2016, 53: 113-122. DOI:10.1016/j.bbi.2015.11.013
[25]Redwine J M, Kosofsky B, Jacobs R E, et al. Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis[J]. Proc Natl Acad Sci USA, 2003, 100(3): 1381-1386. DOI:10.1073/pnas.242746599
[26]West M J, Kawas C H, Stewart W F, et al. Hippocampal neurons in preclinical Alzheimer’s disease[J]. Neurobiol Aging, 2004, 25(9): 1205-1212. DOI:10.1016/j.neurobiolaging.2003.12.005
[27]Amaral D G, Scharfman H E, Lavenex P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies)[J]. Prog Brain Res, 2007, 163: 3-22. DOI:10.1016/S00796123(07)630015
[28]Li B, Yamamori H, Tatebayashi Y, et al. Failure of neuronal maturation in Alzheimer disease dentate gyrus[J]. J Neuropathol Exp Neurol, 2008, 67(1): 78-84. DOI:10.1097/nen.0b013e318160c5db
[29]Nakashiba T, Young J Z, McHugh T J, et al. Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning[J]. Science, 2008, 319(5867): 1260-1264. DOI:10.1126/science.1151120

相似文献/References:

[1]谭新杰,胡长林,蔡文琴,等.成年大鼠局灶性脑梗死后齿状回神经元前体细胞的发生研究[J].第三军医大学学报,2006,28(15):1575.
[2]张杨,梁芯,唐静,等.对CUS抑郁症大鼠模型海马齿状回突触改变的体视学研究[J].第三军医大学学报,2016,38(13):1506.
 Zhang Yang,Liang Xin,Tang Jing,et al.Stereological study on changes of spinal synapses in hippocampal dentate gyrus from chronic unpredictable stress rats[J].J Third Mil Med Univ,2016,38(06):1506.
[3]王海全,杨福兵,徐辉,等.重组人促红细胞生成素对癫痫大鼠海马齿状回的影响[J].第三军医大学学报,2012,34(03):239.
 Wang Haiquan,Yang Fubing,Xu Hui,et al.Effect of recombinant human erythropoietin on dentate gyrus in epileptic rats[J].J Third Mil Med Univ,2012,34(06):239.
[4]邓晓林,蔡文琴.大鼠生后脑星形胶质细胞发育的形态学观察[J].第三军医大学学报,1998,20(02):0.[doi:10.16016/j.1000-5404.1998.02.033 ]
[5]赵振华,晁凤蕾,张蕾,等.早期APP/PS1转基因阿尔茨海默病小鼠海马结构内有髓神经纤维改变的体视学研究[J].第三军医大学学报,2017,39(08):760.
 Zhao Zhenhua,Chao Fenglei,Zhang Lei,et al.Changes of myelinated nerve fibers in hippocampus of APP/PS1 transgenic mice with early symptoms of Alzheimer’s disease: a stereological study[J].J Third Mil Med Univ,2017,39(06):760.

更新日期/Last Update: 2017-03-31