[1]马剑波,黎娟娟,鲁开智,等.小鼠颈部迷走神经放电采集方法在肾缺血再灌注实验中的运用[J].第三军医大学学报,2017,39(03):249-252.
 Ma Jianbo,Li Juanjuan,Lu Kaizhi,et al.Recording of discharge of mouse jugular vagus and its application during renal ischemia-reperfusion[J].J Third Mil Med Univ,2017,39(03):249-252.
点击复制

小鼠颈部迷走神经放电采集方法在肾缺血再灌注实验中的运用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第03期
页码:
249-252
栏目:
基础医学
出版日期:
2017-02-15

文章信息/Info

Title:
Recording of discharge of mouse jugular vagus and its application during renal ischemia-reperfusion
作者:
马剑波黎娟娟鲁开智顾健腾
第三军医大学西南医院手术麻醉科
Author(s):
Ma Jianbo Li Juanjuan Lu Kaizhi Gu Jianteng

Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China

关键词:
肾缺血再灌注迷走神经胆碱能抗炎通路电生理神经
Keywords:
renal ischemia-reperfusion vagus nerve cholinergic anti-inflammatory pathway electrophysiology nerve
分类号:
R338.8; R364.12; R692
文献标志码:
A
摘要:

目的     观察研究C57BL/6J小鼠肾缺血再灌注期间颈部迷走神经放电变化,并介绍其迷走神经放电采集方法与技巧。方法      雄性C57BL/6J小鼠8只,8~10周龄,体质量22~26 g,沿颈正中线切开皮肤,逐层分离至颈迷走神经,用铂金电极头引导神经放电并记录其放电频率;继而进行腹部手术,通过夹闭双侧肾门缺血25  min后再恢复血流30 min,该过程持续记录其迷走神经放电频率变化。结果     与基础放电频率相比,肾缺血期间迷走神经放电频率由(520±52)Hz上升至(632±59)Hz (n=8,P<0.05),再灌注后15 min内放电频率进一步升高至(672±58)Hz(n=8,P<0.05),之后逐步下降至(544±51)Hz(n=8,P<0.05)。结论     肾缺血再灌注期间小鼠颈部迷走神经放电频率较基础放电频率明显上升,其原因可能涉及缺血再灌注时自身的神经保护性机制。

Abstract:

Objective       To record the frequency variations of jugular vagus discharge in mouse model of renal ischemia-reperfusion, and introduce the method and experimental skills of the recording. Methods       The right cervical vagal nerve of 8 male C57BL/6J mice (8~10 weeks old, weighing 22~26 g) was exposed and then bluntly separated through a midline cervical incision. The vagus nerve discharge was conducted by a pair of bipolar stainless steel electrodes and then recorded. Renal ischemia was induced by bilateral renal pedicle clamping for 25 min and followed by reperfusion for 30 min. The frequency variations of vagus nerve discharge were recorded by the electrodes during the whole process. Results       Compared with the basic values, the discharge frequency were increased from 520±52 Hz to 632±59 Hz (n=8, P<0.05) in ischemic phase, and furthermore it kept in an increasing trend during 15 minutes’ reperfusion and then reached the peak (672±58 Hz, n=8, P<0.05), but then was gradually decreased to 544±51 Hz after reperfusion (n=8, P<0.05). Conclusion       The vagus discharge is significantly increased during renal ischemia-reperfusion, which might be due to neural protection in the process.

参考文献/References:

[1]Yap S C, Lee H T. Acute kidney injury and extrarenal organ dysfunction:  new concepts and experimental evidence[J]. Anesthesiology, 2012, 116(5):  1139-1148. DOI: 10.1097/ALN.0b013e31824f951b
[2]White L E, Hassoun H T. Inflammatory Mechanisms of Organ Crosstalk during Ischemic Acute Kidney Injury[J]. Int J Nephrol, 2012, 2012:  505197. DOI: 10.4061/2012/505197
[3]Gu J, Chen J, Xia P, et al. Dexmedetomidine attenuates remote lung injury induced by renal ischemiareperfusion in mice[J]. Acta Anaesthesiol Scand, 2011, 55(10):  1272-1278. DOI: 10.1111/j.1399-6576.2011.02526.x
[4]Borovikova L V,  Ivanova S,  Zhang M,  et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature,  2000,  405(6785):  458-462. DOI: 10.1038/35013070
[5]Tracey K J. The inflammatory reflex[J]. Nature, 2002, 420(6917):  853-859. DOI: 10.1038/nature01321
[6]Xiang H, Hu B, Li Z, et al. Dexmedetomidine controls systemic cytokine levels through the cholinergic antiinflammatory pathway[J]. Inflammation, 2014, 37(5):  1763-1770. DOI: 10.1007/s10753-014-9906-1
[7]Zhao M, He X, Bi X Y, et al. Vagal stimulation triggers peripheral vascular protection through the cholinergic antiinflammatory pathway in a rat model of myocardial ischemia/reperfusion[J]. Basic Res Cardiol, 2013, 108(3):  345. DOI: 10.1007/s00395-013-0345-1
[8]Liu D, Zhang H G, Chang M T, et al. Melanocortin-4 receptor agonists alleviate intestinal dysfunction in secondary intra-abdominal hypertension rat model[J]. J Surg Res, 2015, 195(1):  263-270. DOI: 10.1016/j.jss.2015.01.007
[9]Johnston G R, Webster N R. Cytokines and the immunomodulatory function of the vagus nerve[J]. Br J Anaesth, 2009, 102(4):  453-462. DOI: 10.1093/bja/aep037
[10]Fernandez R,  Nardocci G,  Navarro C,  et al. Neural reflex regulation of systemic inflammation:  potential new targets for sepsis therapy[J]. Front Physiol, 2014, 5:  489. DOI: 10.3389/fphys.2014.00489
[11]Kentish S J, Vincent A D, Kennaway D J, et al. High-Fat Diet-Induced Obesity Ablates Gastric Vagal Afferent Circadian Rhythms[J]. J Neurosci,  2016,  36(11):  3199-3207. DOI: 10.1523/JNEUROSCI.2710-15.2016
[12]Luyer M D, de Haan J J, Lubbers T,  et al. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock[J]. Shock, 2013, 39(5):  460-461. DOI:  10.1097/SHK.0b013e31828def5a
[13]Headland S E, Norling L V. The resolution of inflammation:  Principles and challenges[J]. Semin Immunol, 2015, 27(3):  149-160. DOI: 10.1016/j.smim.2015.03.014
[14]Nathan C. Points of control in inflammation[J]. Nature, 2002, 420(6917):  846-852. DOI: 10.1038/nature01320
[15]Atkinson S J. A wandering path toward prevention for acute kidney injury[J]. J Clin Invest,  2016,  126(5):  1640-1642. DOI: 10.1172/JCI86826
[16]Inoue T, Abe C, Sung S S, et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through alpha7nAChR+ splenocytes[J]. J Clin Invest, 2016, 126(5):  1939-1952. DOI: 10.1172/JCI83658
[17]Lee S W, Li Q,  Libbus I,  et al. Chronic cyclic vagus nerve stimulation has beneficial electrophysiological effects on healthy hearts in the absence of autonomic imbalance[J]. Physiol Rep, 2016, 4(9):  e12786. DOI: 10.14814/phy2.12786
[18]Bewernick B, Schlaepfer T E. Update on Neuromodulation for TreatmentResistant Depression[J]. F1000Res, 2015, 4(F1000 Faculty Rev): 1389. DOI: 10.12688/f1000research.6633.1

相似文献/References:

[1]隆敏,覃军,黄岚,等.心率变异性与急性高原反应评分关系初探[J].第三军医大学学报,2006,28(10):1098.
[2]黄健,杨志焕.内毒素血症大鼠颈迷走神经传出放电变化[J].第三军医大学学报,2005,27(09):850.
[3]余佩武,王代科,杨顺兴,等.胃窦体组织学分界与迷走神经胃窦支关系探讨[J].第三军医大学学报,1992,14(04):0.[doi:10.16016/j.1000-5404.1992.04.004 ]

更新日期/Last Update: 2017-02-06