[1]马小娟,王超,庞琴,等.不同牙根形态对下颌第一磨牙即刻种植即刻负重影响的三维有限元分析[J].第三军医大学学报,2017,39(01):28-33.
 Ma Xiaojuan,Wang Chao,Pang Qin,et al.Effect of root morphology of first mandibular molar on its immediate loading after immediate implant: a 3-D finite element analysis[J].J Third Mil Med Univ,2017,39(01):28-33.
点击复制

不同牙根形态对下颌第一磨牙即刻种植即刻负重影响的三维有限元分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第01期
页码:
28-33
栏目:
基础医学
出版日期:
2017-01-15

文章信息/Info

Title:
Effect of root morphology of first mandibular molar on its immediate loading after immediate implant: a 3-D finite element analysis
作者:
马小娟王超庞琴杜全高付钢
重庆医科大学附属口腔医院种植科,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室
Author(s):
Ma Xiaojuan Wang Chao Pang Qin Du Quangao Fu Gang

Department of Implant Dentistry, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing  Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

关键词:
磨牙即刻种植即刻负重三维有限元生物力学
Keywords:
molar immediate implant immediate loading three dimensional finite element biomechanics
分类号:
R319; R783.3; R783.6
文献标志码:
A
摘要:

目的      基于三维有限元的方法,分析下颌第一磨牙即刻种植即刻负重时,不同牙根形态对种植体及其周围骨界面生物力学分布的影响。 方法     用两组牙根解剖形态不同的下颌第一磨牙建立下颌第一磨牙即刻种植即刻负重的三维有限元模型。两组牙齿分别为牙根分叉角度(interradicular angle,IA)不同组、根柱高度(root trunk height,RT)不同组。每个模型以100N的力分别轴向(冠根向)、斜向舌侧45°、舌颊向、近远中向加载,应用ANSYS软件分析种植体的位移及种植体骨界面的应力值。结果      成功建立了下颌第一磨牙即刻种植即刻负重的三维有限元模型;有限元分析结果显示:随根分叉角度增大,根柱高度变短,各加载方向上种植体的最大位移、种植体骨界面的最大应力都呈下降趋势。种植体的最大位移中最大值在近远中向加载RT=5.3 mm时出现达0.461 mm,最小值出现在轴向加载IA=42°时,为0.008 mm。骨界面的应力集中于颈部皮质骨及螺纹接触部位较薄弱的松质骨上。骨界面的应力最大值在近远中向加载IA=10°时出现,最小值在轴向加载IA=18°时出现。结论      不同牙根解剖形态对下颌第一磨牙即刻种植即刻负重种植体骨结合的形成有一定影响,使牙根间隔骨量减少的解剖因素增加了第一磨牙即刻种植即刻负重失败的风险。

Abstract:

Objective     To determine the effect of different root morphology of first mandibular molar on its immediate loading after immediate implant based on the three dimensional (3-D) finite element method. Methods           Two groups of first mandibular molars with different root morphology were used to establish the model after immediate implant, and immediate loading of the first mandibular molars were built. The 2 groups of tooth were further divided according to their different interradicular angle (IA) and root trunk height (RT). Load of 100 N was applied to the buccal cusps in 4 different directions, including axial, oblique 45°, lingual, and mesial directions. The displacements of implant and the Von Mises stresses of bone were analyzed with finite element analysis software ANSYS. Results       The 3-D finite element model of immediate loading of first mandibular molar after immediate implant was established successfully. The results of the analysis indicated that with the increase of root separation and the shorter root trunk height, the maximum displacement of the implant and maximum Von Mises stresses of the implant bone interface were in a downward trend. The maximum displacement of the implant reached 0.461 mm when the mesial loading at RT of 5.3 mm, and the minimum displacement was only 0.008 mm when the axial loading at IA of 42°. The stresses concentrated upon the cortical bone of the neck of implant and the weak cancellous bone beside thread. The maximum Von Mises stresses of the implant bone interface was observed when the mesial loading at IA of 10°, while the minimum was when the axial loading at IA of 18°. Conclusion      Different root anatomical morphology of mandibular first molar exert certain effects on the formation of osseointegration in the implant. The decrease of available bone in interradicular septa enhances the risk of failure in the immediate loading of mandibular first molar after immediate implant.

参考文献/References:

[1]吴展,  李婧,  陈卓凡. 上颌前牙即刻种植即刻修复的临床应用研究[J]. 中国口腔种植学杂志,  2012 , 17(2): 67-82.
[2]赖荣康,  甘友志. 即刻种植即刻负载修复单牙缺失的美学效果及患者主观满意度研究[J]. 现代诊断与治疗,  2016,  27(1):  140-141.
[3]Atieh M A,  Alsabeeha N H M,  Duncan W J, et al. Immediate single implant restorations in mandibular molar extraction sockets:  a controlled clinical trial[J]. Clinical oral implants research,  2013,  24(5):  484-496.DOI:  10.1111/j.1600-0501. 2011.02415.x
[4]Batchelor P A,  Sheiham A. Grouping of tooth surfaces by susceptibility to caries:  a study in 5 16 yearold children[J]. BMC Oral Health,  2004,  4(1):  1.DOI:  10.1186/1472-6831-4-2
[5]Kerns D G,  Greenwell H,  Wittwer J W,  et al. Root trunk dimensions of 5 different tooth types.[J]. International Journal of Periodontics & Restorative Dentistry,  1999,  19(1): 82-91.DOI:  10.11607/prd.00.0301
[6]Plagmann H,  Holtorf S,  Kocher T. A study on the imaging of complex furcation forms in upper and lower molars[J]. Journal of clinical periodontology,  2000,  27(12):  926-931.DOI:  10. 1034/j.1600051x.2000.027012926.x
[7]Inglam S,  Suebnukarn S,  Tharanon W,  et al. Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus:  a finite element study[J]. Medical & biological engineering & computing,  2010,  48(7):  681-689.DOI:  10.1007/s11517-010-0584-3
[8]de Faria Almeida D A,  Pellizzer E P,  Verri F R,  et al. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants:  threedimensional finite element method with statistical analysis[J]. Journal of periodontology,  2014,  85(2):  261-269.DOI 10.1902/jop.2013.120713
[9]Kong L,  Hu K,  Li D,  et al. Evaluation of the cylinder implant thread height and width:  a 3dimensional finite element analysis[J]. International Journal of Oral & Maxillofacial Implants,  2008,  23(1): 65-74.
[10]Zafiropoulos G G,  Kasaj A,  Hoffmann O. Immediate implant placement in fresh mandibular molar extraction socket:  8year results. A case report[J]. Journal of Oral Implantology,  2010,  36(2):  145-151.DOI: 10.1563/ AAID-JOI-D-09-00030
[11]Hayacibara R M,  Gon alves C S,  Garcez-Filho J,  et al. The success rate of immediate implant placement of mandibular molars:  a clinical and radiographic retrospective evaluation between 2 and 8 years[J]. Clinical oral implants research,  2013,  24(7):  806-811. DOI:  10.1111/j.16000501.2012.02461.x
[12]Cafiero C,  Annibali S,  Gherlone E,  et al. Immediate transmucosal implant placement in molar extraction sites:  a 12-month prospective multicenter cohort study[J]. Clinical oral implants research,  2008,  19(5):  476-482.DOI:  10.1111/ j.1600-0501.2008.01541.x
[13]刘宝林.现代口腔种植学.北京: 人民卫生出版社, 2011: 4-5.
[14]SzmuklerMoncler S,  Piattelli A,  Favero G A,  et al. Considerations preliminary to the application of early and immediate loading protocols in dental implantology[J]. Clinical oral implants research,  2000,  11(1):  12-25.DOI:  10.1034/j.1600-0501.2000.011001012.x
[15]Lin C L,  Lin Y H,  Chang S H. Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla:  prediction using FEA and SED bone remodeling algorithm[J]. Journal of biomechanics,  2010,  43(4):  644-651.

相似文献/References:

[1]吴丹,王璐,徐凌,等.即刻种植即刻加载对Beagle犬骨结合界面形成的影响[J].第三军医大学学报,2012,34(12):1197.
 Wu Dan,Wang Lu,Xu Ling,et al.Effect of immediate loading of immediate implant on implant-bone interface formation in Beagle dogs[J].J Third Mil Med Univ,2012,34(01):1197.

更新日期/Last Update: 2017-01-02