[1]Yunn-Hwen Gan.类鼻疽研究进展[J].第三军医大学学报,2016,38(11):1195-1199.
 Yunn-Hwen Gan.Current state of melioidosis research[J].J Third Mil Med Univ,2016,38(11):1195-1199.
点击复制

类鼻疽研究进展(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第11期
页码:
1195-1199
栏目:
专家述评
出版日期:
2016-06-15

文章信息/Info

Title:
Current state of melioidosis research
作者:
Yunn-Hwen Gan
新加坡,新加坡国立大学:Yong Loo Lin医学院生物化学系,免疫学中心
Author(s):
Yunn-Hwen Gan

Department of Biochemistry, Yong Loo Lin School of Medicine, Immunology Program, National University of Singapore, Singapore 117597, Singapore
 

关键词:
类鼻疽免疫逃逸细菌分泌系统
分类号:
R378; R515.9
文献标志码:
A
摘要:

类鼻疽是由类鼻疽伯克霍尔德菌引起的一种新兴传染病,流行于东南亚和澳大利亚北部,目前尚无有效疫苗。类鼻疽菌作为一种兼性胞内致病菌具有庞大基因组,编码多种毒力因子,通过控制宿主细胞生物学途径并且抑制宿主细胞免疫应答过程,促进其在细胞内的增殖。本文对目前类鼻疽菌毒力相关的Ⅲ型和Ⅵ型分泌系统在类鼻疽病发病机制中的作用进行了概述,并讨论了类鼻疽菌新发现的毒力因子在细菌致病过程以及逃逸或破坏宿主免疫应答中发挥的作用。随着基因组学和蛋白组学的进展,对类鼻疽菌与宿主相互作用的分子机制有所加深,但许多问题仍有待探索解决,如疫苗、诊断、有效的治疗药物等。

参考文献/References:


[1]Cheng A C, Currie B J. Melioidosis: epidemiology, pathophysiology, and management[J]. Clin Microbiol Rev, 2005, 18(2): 383-416. DOI: 10.1128/CMR.18.2.383-416.2005
[2]Limmathurotsakul D, Golding N, Dance D A, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis[J]. Nat Microbiol, 2016, 1(1).pii: 15008. DOI: 10.1038/nmicrobiol.2015.8
[3]Wiersinga W J, van-der-Poll T, White N J, et al. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei[J]. Nat Rev Microbiol, 2006, 4(4): 272-282. DOI: 10.1038/nrmicro1385
[4]Cheng A C, O’brien M, Freeman K, et al. Indirect hemagglutination assay in patients with melioidosis in northern Australia[J]. Am J Trop Med Hyg, 2006, 74(2): 330-334.
[5]Currie B J, Fisher D A, Howard D M, et al. Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature[J]. Clin Infect Dis, 2000, 31(4): 981-986. DOI: 10.1086/318116
[6]Cheng A C. Melioidosis: advances in diagnosis and treatment[J]. Curr Opin Infect Dis, 2010, 23(6): 554-559. DOI: 10. 1097/ QCO.0b013e32833fb88c
[7]Lipsitz R, Garges S, Aurigemma R, et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010[J]. Emerg Infect Dis, 2012, 18(12): e2. DOI: 10.3201/eid1812.120638
[8]Pitman M C, Luck T, Marshall C S, et al. Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm[J]. PLoS Negl Trop Dis, 2015, 9(3): e0003586. DOI: 10.1371/journal.pntd.0003586
[9]Tan K S, Lee K O, Low K C, et al. Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria[J]. J Clin Invest, 2012, 122(6): 2289-2300. DOI: 10.1172/JCI57817
[10]Chansrichavala P, Wongsuwan N, Suddee S, et al. Public awareness of melioidosis in Thailand and potential use of video clips as educational tools[J]. PLoS One, 2015, 10(3): e0121311. DOI: 10.1371/ journal. pone.0121311
[11]Limmathurotsakul D, Funnell S G, Torres A G, et al. Consensus on the development of vaccines against naturally acquired melioidosis[J]. Emerg Infect Dis, 2015, 21(6). DOI: 10. 3201/eid2106.141480
[12]Galyov E E, Brett P J, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis[J]. Annu Rev Microbiol, 2010, 64: 495-517. DOI: 10.1146/annurev.micro.112408.134030
[13]Lee Y H, Chen Y, Ouyang X, et al. Identification of tomato plant as a novel host model for Burkholderia pseudomallei[J]. BMC Microbiol, 2010, 10: 28. DOI: 10.1186/1471-2180-10-28
[14]Inglis T J, Rigby P, Robertson T A, et al. Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape[J]. Infect Immun, 2000, 68(3): 1681-1686. DOI: 10.1128/iai.68.3.1681-1686.2000
[15]Gan Y H, Chua KL, Chua H H, et al. Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system[J]. Mol Microbiol, 2002, 44(5): 1185-1197.
[16]Sprague L D, Neubauer H. Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation[J]. J Vet Med B Infect Dis Vet Public Health, 2004, 51(7): 305-320. DOI: 10.1111/j.1439-0450.2004.00797.x
[17]Holden M T, Titball R W, Peacock S J, et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei[J]. Proc Natl Acad Sci U S A, 2004, 101(39): 14240-14245. DOI: 10.1073/pnas.0403302101
[18]Attree O, Attree I. A second type Ⅲ secretion system in Burkholderia pseudomallei: who is the real culprit?[J]. Microbiology, 2001, 147(Pt 12): 3197-3199. DOI: 10.1099/00221287-147-12-3197
[19]Winstanley C, Hales B A, Hart C A. Evidence for the presence in Burkholderia pseudomallei of a type Ⅲ secretion system-associated gene cluster[J]. J Med Microbiol, 1999, 48(7): 649-656. DOI: 10.1099/00222615-48-7-649
[20]Stevens M P, Wood M W, Taylor L A, et al. An Inv/Mxi-Spa-like type Ⅲ protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen[J]. Mol Microbiol, 2002, 46(3): 649-659.
[21]Shalom G, Shaw J G, Thomas M S. In vivo expression technology identifies a type Ⅵ secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages[J]. Microbiology, 2007, 153(Pt 8): 2689-2699. DOI: 10.1099/mic.0.2007/006585-0
[22]Schell M A, Ulrich R L, Ribot W J, et al. Type Ⅵ secretion is a major virulence determinant in Burkholderia mallei[J]. Mol Microbiol, 2007, 64(6): 1466-1485. DOI: 10. 1111/ j.1365-2958.2007.05734.x
[23]Lim Y T, Jobichen C, Wong J, et al. Extended loop region of Hcp1 is critical for the assembly and function of type Ⅵ secretion system in Burkholderia pseudomallei[J]. Sci Rep, 2015, 5: 8235. DOI: 10.1038/srep08235
[24]Burtnick M N, Brett P J, Harding S V, et al. The cluster 1 type Ⅵ secretion system is a major virulence determinant in Burkholderia pseudomallei[J]. Infect Immun, 2011, 79(4): 1512-1525. DOI: 10.1128/IAI.01218-10
[25]Pilatz S, Breitbach K, Hein N, et al. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence[J]. Infect Immun, 2006, 74(6): 3576-3586. DOI: 10.1128/iai.01262-05
[26]French C T, Toesca I J, Wu T H, et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade[J]. Proc Natl Acad Sci U S A, 2011, 108(29): 12095-12100. DOI: 10.1073/pnas.1107183108
[27]Wong J, Chen Y, Gan Y H. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type Ⅵ Secretion System in an Intracellular Bacterium[J]. Cell Host Microbe, 2015, 18(1): 38-48. DOI: 10.1016/j.chom.2015. 06.002
[28]Burtnick M N, DeShazer D, Nair V, et al. Burkholderia mallei cluster 1 type Ⅵ secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages[J]. Infect Immun, 2009, 78(1): 88-99. DOI: 10.1128/iai.00985-09
[29]Toesca I J, French C T, Miller J F. The Type Ⅵ secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species[J]. Infect Immun, 2014, 82(4): 1436-1444. DOI: 10. 1128/IAI.01367-13
[30]Chen Y, Schroder I, French C T, et al. Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon[J]. BMC Microbiol, 2014, 14: 206. DOI: 10.1186/ s12866- 014-0206-6
[31]Gong L, Cullinane M, Treerat P, et al. The Burkholderia pseudomallei type Ⅲ secretion system and BopA are required for evasion of LC3-associated phagocytosis[J]. PLoS One, 2011, 6(3): e17852. DOI: 10.1371/journal. pone.0017852
[32]Muangman S, Korbsrisate S, Muangsombut V, et al. BopC is a type Ⅲ secreted effector protein of Burkholderia pseudomallei[J]. FEMS Microbiol Lett, 2011, 323(1): 75-82. DOI: 10.1111/j.1574-6968.2011.02359.x
[33]Tan K S, Chen Y, Lim Y C, et al. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM[J]. J Immunol, 2010, 184(9): 5160-5171. DOI: 10.4049/jimmunol.0902663
[34]Cui J, Yao Q, Li S, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family[J]. Science, 2010, 329(5996): 1215-1218. DOI: 10.1126/science.1193844
[35]Lu Q, Xu Y, Yao Q, et al. A polar-localized iron-binding protein determines the polar targeting of Burkholderia BimA autotransporter and actin tail formation[J]. Cell Microbiol, 2015, 17(3): 408-424. DOI: 10.1111/cmi.12376
[36]Ceballos-Olvera I, Sahoo M, Miller M A, et al. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious[J]. PLoS Pathog, 2011, 7(12): e1002452. DOI: 10.1371/ journal. ppat.1002452
[37]Chanchamroen S, Kewcharoenwong C, Susaengrat W, et al. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects[J]. Infect Immun, 2009, 77(1): 456-463. DOI: 10. 1128/ IAI. 00503-08
[38]Woodman M E, Worth R G, Wooten R M. Capsule influences the deposition of critical complement C3 levels required for the killing of Burkholderia pseudomallei via NADPH-oxidase induction by human neutrophils[J]. PLoS One, 2012, 7(12): e52276. DOI: 10.1371/journal. pone.0052276
[39]Price E P, Sarovich D S, Mayo M, et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection[J]. MBio, 2013, 4(4).pii: e00388-13. DOI: 10.1128/ mBio.00388-13
 

相似文献/References:

[1]杨林,吴小候,罗春丽,等.肾癌细胞来源的exosomes诱导Jurkat T细胞凋亡[J].第三军医大学学报,2013,35(05):426.
 Yang Lin,Wu Xiaohou,Luo Chunli,et al.Exosomes derived from renal cancer cells induce Jurkat T cell apoptosis in vitro[J].J Third Mil Med Univ,2013,35(11):426.

更新日期/Last Update: 2016-05-28