[1]冯悦,钟萌,张莉,等.吴茱萸碱对小鼠大脑及肩胛间棕色脂肪摄取18F-FDG的影响[J].第三军医大学学报,2016,38(15):1746-1749.
 Feng Yue,Zhong Meng,Zhang Li,et al.Effect of evodiamine on 18F-FDG uptake in mouse brain and interscapular brown adipose tissue[J].J Third Mil Med Univ,2016,38(15):1746-1749.
点击复制

吴茱萸碱对小鼠大脑及肩胛间棕色脂肪摄取18F-FDG的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第15期
页码:
1746-1749
栏目:
基础医学
出版日期:
2016-08-15

文章信息/Info

Title:
Effect of evodiamine on 18F-FDG uptake in mouse brain and interscapular brown adipose tissue
作者:
冯悦钟萌张莉朱艳邱琳陈跃
泸州医学院附属医院:核医学科,药剂科
Author(s):
Feng Yue Zhong Meng Zhang Li Zhu Yan Qiu Lin Chen Yue

Department of Nuclear Medicine, Department of Pharmacy, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, 646000, China

关键词:
吴茱萸碱肩胛间棕色脂肪糖代谢小动物PET/CT
Keywords:
evodiamine interscapular brown adipose tissue glucose metabolism micro-PET/CT
分类号:
Q591.4; R285.5; R322.81
文献标志码:
A
摘要:

目的      利用小动物PET/CT观察吴茱萸碱(evodiamine,EVO)对小鼠大脑及肩胛间棕色脂肪(interscapular brown adipose tissue,IBAT)糖代谢的影响。      方法      采用完全随机分组法将昆明小鼠分为5组,分别腹腔注射剂量为0(空白组)、125、250、375 mg/kg的EVO混悬液,30 min后腹腔注射18F-氟代脱氧葡萄糖(18F-FDG),1 h后采用小动物PET/CT观察各组小鼠大脑及IBAT摄取18F-FDG的情况,并测定其标准化摄取值(SUV)。      结果      5组小鼠IBAT的SUV值分别为(0.81±0.08)、(0.53±0.06)、(1.30±0.17)、(1.70±0.10)和(0.74±0.21)。剂量为250 mg/kg和375 mg/kg时,IBAT的SUV值与空白组比较明显升高(P<0.05)。5组小鼠大脑SUV值分别为(1.43±0.15)、(2.20±0.20)、(2.80±0.20)、(3.33±0.15)和(4.00±0.25),随EVO剂量增加而升高,组间比较差异均有统计学意义(P<0.05)。      结论       EVO可以增加小鼠IBAT和大脑的糖代谢。

Abstract:

Objective      To study the effect of evodiamine (EVO) on glucose metabolism of brain and interscapular brown adipose tissue (IBAT) in mice quantified by 18F-fluoro-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) scanning.       Methods      Kunming mice were randomized into 5 groups (each group n=3) and intraperitoneal (i.p.) injected with EVO doses of 0, 125, 250, 375 and 500 mg/kg, and 18F-FDG was given in 30 min later. The uptake of 18F-FDG in the brain and IBAT were observed after 1 h and standard uptake value (SUV) were measured by micro-PET/CT.       Results      The SUVs of IBAT were 0.81±0.08, 0.53±0.06, 1.30±0.17, 1.70±0.10 and 0.74±0.21 corresponding to EVO doses of 0, 125, 250, 375 and 500 mg/kg. Compared to the control, the increased SUVs in the groups of 250 and 375 mg/kg were significant (P<0.05). The SUVs of brain were 1.43±0.15, 2.20±0.20, 2.80±0.20, 3.33±0.15 and 4.00±0.25, in a dose-dependent manner. Difference between each 2 groups was statistically significant (P<0.05).       Conclusion      EVO enhances glucose metabolism in mice IBAT and brain.

参考文献/References:

[1]Mineo P M, Cassell E A, Roberts M E, et al. Chronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice[J]. Comp Biochem Physiol A Mol Integr Physiol, 2012, 161(4): 395-400. DOI: 10.1016/j.cbpa.2011.12.012
[2]Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity[J]. Diabetes, 2009, 58(7): 1526-1531. DOI: 10.2337/db09-0530
[3]Vijgen G H, Bouvy N D, Teule G J, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects[J]. J Clin Endocr Metab, 2012, 97(7): E1229- E1233. DOI: 10.1210/jc.2012-1289
[4]Van-Marken-Lichtenbelt W D, Vanhommerig J W, Smulders N M, et al. Cold-activated brown adipose tissue in healthy men [J]. N Engl J Med, 2009, 360(15): 1500-1508. DOI: 10.1056/NEJMoa0808718
[5]Cannon B, Nedergaard J A N. Brown adipose tissue: function and physiological significance[J]. Physiol Rev, 2004, 84(1): 277-359. DOI: 10.1152/physrev.00015.2003
[6]Mirbolooki M R, Upadhyay S K, Constantinescu C C, et al. Adrenergic pathway activation enhances brown adipose tissue metabolism: a [18F]FDG PET/CT study in mice[J]. Nucl Med Biol, 2014, 41(1): 10-16. DOI: 10.1016/ j.nucmedbio.2013.08.009
[7]Winkler E A, Nishida Y, Sagare A P, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration[J]. Nat Neurosci, 2015, 18(4): 521-530. DOI: 10.1038/nn. 3966
[8]Ossenkoppele R, Tolboom N, Foster-Dingley J C, et al. Longitudinal imaging of Alzheimer pathology using [11C] PIB, [18F] FDDNP and [18F] FDG PET[J]. Eur J Nucl Med Mol Imaging, 2012, 39(6): 990-1000. DOI: 10.1007/s00259-012-2102-3
[9]Yang J, Cai X, Lu W, et al. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells[J]. Cancer Lett, 2013, 328(2): 243-251. DOI: 10.1016/j.canlet.2012.09.019
[10]Yuan S M, Gao K, Wang D M, et al. Evodiamine improves congnitive abilities in SAMP8 and APP swe/PS1 ΔE9 transgenic mouse models of Alzheimer’s disease[J]. Acta Pharmacol Sin, 2011, 32(3): 295-302. DOI: 10.1038/aps. 2010.230
[11]Wang T, Wang Y, Kontani Y, et al. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling[J]. Endocrinology, 2008, 149(1): 358-366. DOI: 10.1210/en. 2007-0467
[12]Yao R, Lecomte R, Crawford E S. Small-animal PET: what is it, and why do we need it?[J]. J Nucl Med Technol, 2012, 40(3): 157-165. DOI: 10.2967/jnmt.111.098632
[13]Cohade C. Altered biodistribution on FDG-PET with emphasis on brown fat and insulin effect[J]. Semin Nucl Med, 2010, 40(4): 283-293. DOI: 10.1053/j.semnuclmed. 2010.02.001
[14]Abraham A, Nichol G, Williams K A, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial[J]. J Nucl Med, 2010, 51(4): 567-574. DOI: 10.2967/jnumed.109.065938
[15]Caroli A, Prestia A, Chen K, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison[J]. J Nucl Med, 2012, 53(4): 592-600. DOI: 10.2967/jnumed.111.094946
[16]Yu H, Jin H, Gong W, et al. Pharmacological actions of multi-target-directed evodiamine[J]. Molecules, 2013, 18(2): 1826-1843. DOI: 10.3390/molecules18021826
[17]Macdonald I R, DeBay D R, Reid G A, et al. Early detection of cerebral glucose uptake changes in the 5XFAD mouse[J]. Curr Alzheimer Res, 2014, 11(5): 450-460. DOI: 10.2174/1567205011666140505111354
[18]Soto-Montenegro M L, Vaquero J J, Pascau J, et al. Detection of visual activation in the rat brain using 2-deoxy-2-[18F]fluoro-D-glucose and statistical parametric mapping (SPM)[J]. Mol Imaging Biol, 2009, 11(2): 94-99. DOI: 10.1007/s11307-008-0179-7

更新日期/Last Update: 2016-07-21