[1]崔栋,尚永刚,韩广玮,等.前列腺毛细血管内皮细胞屏障功能研究[J].第三军医大学学报,2016,38(04):385-389.
 Cui Dong,Shang Yonggang,Han Guangwei,et al.Barrier function of rat prostate capillary endothelial cells in vitro[J].J Third Mil Med Univ,2016,38(04):385-389.
点击复制

前列腺毛细血管内皮细胞屏障功能研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第04期
页码:
385-389
栏目:
基础医学
出版日期:
2016-02-29

文章信息/Info

Title:
Barrier function of rat prostate capillary endothelial cells in vitro
作者:
崔栋尚永刚韩广玮刘城城李龙坤易善红
第三军医大学新桥医院泌尿外科;解放军第169医院泌尿外科;重庆市第四人民医院泌尿外科
Author(s):
Cui Dong Shang Yonggang Han Guangwei Liu Chengcheng Li Longkun Yi Shanhong

Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037; Department of Urology, No. 169 Hospital of PLA, Hengyang, Hunan Province, 421002; Department of Urology, Fourth People’s Hospital of Chongqing, Chongqing, 400014, China

关键词:
前列腺毛细血管内皮细胞血前列腺屏障跨膜电阻
Keywords:
prostate capillary endothelial cells blood prostate barrier transepithelial electrical resistance
分类号:
R322.13;R322.64;R329.27
文献标志码:
A
摘要:

目的      分离培养大鼠前列腺毛细血管内皮细胞,体外研究大鼠前列腺毛细血管内皮细胞的屏障功能。      方法      采用细胞生长特性选择法分离培养大鼠前列腺毛细血管内皮细胞,用第Ⅷ因子相关抗原抗体对分离培养的前列腺毛细血管内皮细胞进行免疫学鉴定。免疫组化观察毛细血管内皮细胞之间紧密连接蛋白claudin-1的表达,采用跨膜电阻测量仪检测毛细血管内皮细胞的跨膜电阻,用酚红渗漏实验检测其通透性,以大鼠肺毛细血管内皮细胞、脑毛细血管内皮细胞作为阴性与阳性对照。      结果      成功分离大鼠前列腺毛细血管内皮细胞,体外培养可以形成紧密的单层细胞结构,呈铺路石样生长。第Ⅷ因子相关抗原抗体的免疫荧光结果显示:分离培养的大鼠前列腺毛细血管内皮细胞胞浆表达绿色荧光,提示分离的细胞为毛细血管内皮细胞;免疫组化结果显示紧密连接蛋白claudin-1在相邻的毛细血管内皮细胞之间表达;体外培养的大鼠前列腺毛细血管内皮细胞,阴性对照组肺毛细血管内皮细胞,阳性对照组脑毛细血管内皮细胞的跨膜电阻峰值分别可以达到(142.2±3.1)、(43.3±3.5)、(248.2±6.2)Ω/cm2,并稳定保持2~3 d,三者比较差异有统计学意义(P<0.05)。酚红渗漏实验结果显示前列腺毛细血管内皮细胞、阳性对照组脑毛细血管内皮细胞随着细胞单层跨膜电阻的增加,基底侧的酚红浓度减低,阴性对照组肺毛细血管内皮细胞酚红渗透量随跨膜电阻的改变变化趋势不明显。      结论      大鼠前列腺毛细血管内皮细胞与脑毛细血管内皮细胞等屏障内皮相比拥有相似的结构功能,体外培养的大鼠前列腺毛细血管内皮细胞具有屏障特性,可以作为血前列腺屏障研究的体外模型。

Abstract:

Objective      To culture rat prostate capillary endothelial cells in vitro, and study their barrier function.       Methods      The rat prostate capillary endothelial cells were isolated and cultured with cell growth feature selection method. Antibody against Ⅷ factor related antigen was used for immunological identification of prostate capillary endothelial cells. Immunohistochemistry was adopted to observe the expression of tight junction protein claudin-1. Millicell epithelial resistance measuring instrument was employed to measure the transepithelial electrical resistance of the capillary endothelial cells, and phenol red leakage test was used to detect the permeability of prostate capillary endothelial cells. The rat pulmonary capillary endothelial cells and brain capillary endothelial cells were taken as negative control and positive control respectively.       Results      The rat prostate capillary endothelial cells were successfully isolated and cultured to form compact monolayer cell structure in vitro. The immunofluorescence detection of factor Ⅷ showed that the cultured cells were factor Ⅷ-positive and green fluorescence was expressed. Immunohistochemical results showed that the tight junction protein claudin-1 was expressed between adjacent endothelial cells. The transepithelial electrical resistance peaks of in vitro cultured rat prostate capillary endothelial cells, negative control pulmonary capillary endothelial cells and positive control brain capillary endothelial cells reached 142.20±3.10, 43.3±3.5 and 248.20±6.0 Ω/cm2, respectively, and stably kept for 2~3 d, and there were statistically significant differences between the 3 groups of cells (P<0.05). Phenol red leakage test showed that with the increase of the transepithelial electrical resistance, the concentration of phenol red in basal lateral region of prostate capillary endothelial cells and positive control brain capillary endothelial cells was reduced. However, in negative control pulmonary capillary endothelial cells, the change trend of phenol red in basal lateral region was not obvious.       Conclusion      The rat prostate capillary endothelial cells have similar structure and function with brain capillary endothelial cells. Prostate capillary endothelial cells cultured in vitro have certain barrier properties, and can be used as a research model of blood prostate barrier in vitro.

参考文献/References:

[1]张斌斌, 白安胜. 慢性前列腺炎的发病机制及治疗进展[J]. 疑难病杂志,2014, 13(3): 326-329. DOI:10.3969/j.issn.1671-6450.2014.03.041
[2]Li T, Liu G, Li J, et al. Mechanisms of prostate permeability triggered by microbubble-mediated acoustic cavitation[J]. Cell Biochem Biophys, 2012, 64(2): 147- 153. DOI:10.1007/s12013-012-9383-9
[3]Veksler R, Shelef I, Friedman A. Blood-brain barrier imaging in human neuropathologies[J]. Arch Med Res, 2014, 45(8): 646-652. DOI:10.1016/j.arcmed.2014.11.016
[4]Nishimura Y, Yata K, Nomoto T, et al. Identification of a novel indoline derivative for in vivo fluorescent imaging of blood-brain barrier disruption in animal models[J]. ACS Chem Neurosci, 2013, 4(8): 1183-1193. DOI:10.1021/cn400010t
[5]Bicker J, Alves G, Fortuna A, et al. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review [J]. Eur J Pharm Biopharm, 2014, 87(3): 409-432. DOI:10.1016/j.ejpb.2014.03.012
[6]Thanabalasundaram G, Schneidewind J, Pieper C, et al. The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage[J]. Int J Biochem Cell Biol, 2011, 43(9): 1284-1293. DOI:10.1016/j.biocel.2011.05.002
[7]吴永翔, 朱国霞, 刘新秦, 等. 噪声对豚鼠耳蜗血管纹紧密连接蛋白claudin-5表达及血迷路屏障通透性的影响[J]. 听力学及言语疾病杂志, 2012, 20(2):145-150. DOI:10.3969/j.issn.1006-7299.2012.02.015
[8]Forrester J V, Xu H. Good news-bad news: the Yin and Yang of immune privilege in the eye[J]. Front Immunol, 2012, 3: 338. DOI:10.3389/fimmu.2012.00338
[9]Lee K S, Choi J D. Chronic prostatitis: approaches for best management[J]. Korean J Urol, 2012, 53(2): 69-77. DOI:10.4111/kju.2012.53.2.69
[10]王新施, 朱攀, 朱振国, 等. 咪唑克生对体外血脑屏障炎症模型通透性的影响[J]. 中国病理生理杂志, 2015, 31(4): 669-674. DOI:10.3969/j.issn.1000-4718.2014.12.024
[11]Zhou J X, Ding G R, Zhang J, et al. Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model[J]. Biomed Environ Sci, 2013, 26(2): 128-137. DOI:10.3967/0895-3988.2013.02.007
[12]Mahajan S, Parikh N U, Woodruff T M, et al. C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus[J]. Immunology, 2015, 146(1): 130-143. DOI:10.1111/imm.12489
[13]Stetinova V, Smetanova L, Kholova D, et al. The effect of probiotic Escherichia coli strain Nissle 1917 lipopolysaccharide on the 5-aminosalicylic acid transepithelial transport across Caco-2 cell monolayers[J]. Gen Physiol Biophys, 2013, 32(3): 371-380. DOI:10.4149/gpb_2013035
[14]戴丽娜, 侯龙龙, 黄璜, 等. 生理浓度丁酸钠对Caco-2细胞肠屏障作用中JNK通路的效应[J]. 中华小儿外科杂志, 2014, 35(11): 859-864. DOI:10.3760/cma.j.issn.0253-3006.2014.11.014
[15]曹敏, 黄家君. 小檗碱减轻炎症反应时肠上皮屏障功能损害的实验研究[J]. 第三军医大学学报, 2013, 35(5): 447-450.
[16]郑琴, 周欢, 熊文海, 等. 乌头碱在Caco-2细胞模型上的转运行为[J].中国实验方剂学杂志, 2014, 20(20): 121-124. DOI:10.13422/j.cnki.syfjx.2014200121
[17]Shi L L, Cao Y, Zhu X Y, et al. Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model[J]. Int J Pharm, 2015, 478(1): 60-69. DOI:10.1016/j.ijpharm.2014.11.017
[18]Sanchez-Bridge B, Leveques A, Li H, et al. Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in Caco-2 cell model[J]. Drug Metab Dispos, 2015, 43(1): 9-16. DOI:10.1124/dmd.114.060590
[19]Ogunshola O O. In vitro modeling of the blood-brain barrier: simplicity versus complexity[J]. Curr Pharm Des, 2011, 17(26): 2755-2761.
[20]Vogl A W, Young J S, Du M. New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier[J]. Int Rev Cell Mol Biol, 2013, 303: 319-355. DOI:10.1016/B978-0-12-407697-6.00008-8
[21]田蓉, 刘秋慧, 蔡萌, 等. 过表达Claudin-5增强体外培养的人视网膜微血管内皮细胞屏障功能[J]. 中山大学学报: 医学科学版, 2014, 35(5): 695-701.
[22]查雨锋, 傅晓钟, 张顺, 等. 大鼠脑微血管内皮细胞与周细胞、星形胶质细胞共培养建立体外血脑屏障模型[J]. 中国药理学通报, 2015, 31(5): 730-735.
[23]张水华,季龙凤,马璟.非接触式共培养体外血脑屏障模型的跨膜电阻及通透性[J]. 中国药理学与毒理学杂志, 2012, 26(6): 882-887. DOI:10.3867/j.issn.1000-3002.2012.06.018
[24]Xue Q, Liu Y, Qi H, et al. A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat [J]. Int J Biol Sci, 2013, 9(2): 174-189. DOI:10.7150/ijbs.5115
[25]陈雪, 王军, 王伟, 等. 体外血脑屏障模型的建立及功能测定[J]. 卒中与神经疾病, 2014, 21(4): 195-198,202. DOI:10.3969/j.issn.1007-0478.2014.04.001
[26]赵康峰, 王翀, 孔建, 等. 不同血脑屏障模型的建立及其功能特点[J]. 环境与健康杂志,2012,29(2): 127-130,封3.

更新日期/Last Update: 2016-01-29