[1]李雄武,张徽,柳满然.Sox2下调表达对MDA-MB-231乳腺癌细胞β-catenin与转录中介因子γ的影响[J].第三军医大学学报,2016,38(01):55-61.
 Li Xiongwu,Zhang Hui,Liu Mangran.Effect of targeted Sox2 silencing on expression of β-catenin and TIF1γ in human breast cancer MDA-MB-231 cells[J].J Third Mil Med Univ,2016,38(01):55-61.
点击复制

Sox2下调表达对MDA-MB-231乳腺癌细胞β-catenin与转录中介因子γ的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第01期
页码:
55-61
栏目:
基础医学
出版日期:
2016-01-15

文章信息/Info

Title:
Effect of targeted Sox2 silencing on expression of β-catenin and TIF1γ in human breast cancer MDA-MB-231 cells
作者:
李雄武张徽柳满然
重庆医科大学分子医学与肿瘤研究中心病理学教研室
Author(s):
Li Xiongwu Zhang Hui Liu Mangran

Department of Pathology, Research Center for Molecular Medicine and Cancer, Chongqing Medical University, Chongqing, 400016, China

关键词:
乳腺癌RNA干扰凋亡侵袭Sox2&beta-cateninTIF1&gamma
Keywords:
breast cancer RNA interference apoptosis invasion Sox2 &beta-catenin transcriptional intermediary factor 1&gamma
分类号:
R394.3; R730.23; R737.9
文献标志码:
A
摘要:

目的      下调乳腺癌MDA-MB-231细胞Sox2基因表达,观察对细胞增殖、侵袭和凋亡的影响以及信号因子β-catenin和TIF1γ表达的影响。      方法      将MDA-MB-231细胞分为重组质粒转染组(转染Sox2-shRNA干扰载体)、阴性对照组(转染pMafic7.1-shRNA-NC质粒)、空白对照组(未经处理的MDA-MB-231细胞,n=6),并将shRNA-Sox2-1瞬时转入乳腺癌MDA-MB-231细胞,通过Western blot检测乳腺癌MDA-MB-231细胞中Sox2蛋白表达水平,FCM检测细胞凋亡的情况,Transwell检测细胞的侵袭能力,MTS检测细胞活力和增殖能力。另外,采用Western blot和免疫组化检测靶向抑制Sox2对信号因子β-catenin 和TIF1γ蛋白的表达与分布。      结果      成功构建重组载体pMafic7.1-shRNA-Sox2。与空白对照组(未转染组)和阴性对照组(转染pMafic7.1-shRNA-NC)相比,pMafic7.1-shRNA-Sox2转染至MDA-MB-231细胞后,Sox2蛋白的表达水平明显下调 (P<0.01),细胞凋亡率明显增加(P<0.05),细胞的侵袭能力、活力和增殖能力均明显下降(P<0.05)。与空白对照组(0.79±0.07)和阴性对照组(0.74±0.10)相比,重组质粒转染组β-catenin(0.15±0.04)蛋白的表达水平明显下调(P<0.05);同样,与空白对照组(0.74±0.05)和阴性对照组(0.64±0.07)相比,重组质粒转染组TIF1γ蛋白(0.11±0.01)的表达水平明显下调(P<0.05)。      结论      靶向沉默Sox2基因能促进细胞凋亡,抑制细胞的增殖和侵袭,其作用可能与抑制Wnt/β-catenin信号通路与TIF1γ调控有关。

Abstract:

Objective      To determine the effect of short hairpin RNA-mediated silencing of Sox2 (sex determination region of Y chromosome-related HMG-box 2) on the invasion, proliferation and apoptosis in human breast cancer cells (MDA-MB-231) and on the expression of β-catenin and transcriptional intermediary factor 1γ (TIF1γ).       Methods      Constructed shRNA recombinant vector of targeted Sox2 gene was transfected into MDA-MB-231 cells. The cells transfected with plasmid pMafic7.1-shRNA-NC and those without served as negative and blank control. The protein expression of Sox2 in the 3 groups of cells was detect by Western blotting. The cell apoptosis was measured by flow cytometry. Transwell assay was used to detect the cellular invasiveness and metastasis. Cell vitality and proliferation were tested by MTS assay. The expression and distribution of β-catenin and TIF1γ protein were detected by Western blotting and immunohistochemical staining, respectively.       Results      Recombinant vector of pMafic7.1-shRNA-Sox2 was constructed successfully. When compared with negative and blank control cells, the transfected cells had obviously reduced level of Sox2 protein (P<0.01), significantly enhanced apoptotic rate (P<0.05), and remarkably reduced invasion, vitality and proliferation capacities (P<0.05). The expression level of β-catenin  was significantly decreased in the transfected cells (0.15±0.04) than the negative (0.74±0.10) and blank control cells (0.79±0.07, both P<0.05). So was that of TIF1γ (0.11±0.01 vs 0.64±0.07 and 0.74±0.05, both P<0.05).       Conclusion      Targeted silencing of Sox2 enhances the apoptosis, and inhibits the proliferation and invasion in breast cancer cells, which may be related in the inhibition of Wnt/β-catenin signal pathway and TIF1γ.

参考文献/References:

[1]Luo H, Tu G, Liu Z, et al. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression[J].Cancer Lett, 2015, 361(2): 155-163. DOI: 10.1016/j.canlet.2015.02.018
[2]曹慧慧, 王昌留. Sox基因家族特点及其功能[J].鲁东大学学报: 自然科学版, 2011, 27(1): 58-63. DOI: 10.3969/j.issn.1673-8020.2011.01.015.
[3]Sholl L M, Barletta J A, Yeap B Y, et al. Sox2 protein expression is an independent poor prognostic indicator in stage Ⅰ lung adenocarcinoma[J]. Am J Surg Pathol, 2010, 34(8): 1193-1198.
[4]Leow J J, Orsola A, Chang S L, et al. A contemporary review of management and prognostic factors of upper tract urothelial carcinoma[J]. Cancer Treat Rev, 2015, 41(4): 310-319. DOI: 10.1016/j.ctrv.2015.02.006
[5]Rudin C M, Durinck S, Stawiski E W, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer[J]. Nat Genet, 2012, 44(10): 1111-1116.
[6]Wang L, Yang H, Lei Z, et al. Repression of TIF1γ by SOX2 promotes TGF-β-induced epithelial-mesenchymal transition in non-small-cell lung cancer[J]. Oncogene, 2015, [Epub ahead of print]. DOI: 10.1038/ng.2405 
[7]Xue J, Lin X, Chiu W T, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis[J]. J Clin Invest, 2014, 124(2): 564-579. DOI: 10.1172/JCI71104
[8]Li X, Xu Y, Chen Y, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network[J]. Cancer Lett, 2013, 336(2): 379-389. DOI: 10.1016/j.canlet.2013.03.027
[9]汪锐, 程汉华, 郭一清, 等. 脊椎动物SOX基因家族的系统发生分析[J]. 遗传学报, 2002, 29(11): 990-994.
[10]袁虎, 王秋菊, 韩东一. SOX家族基因的功能及其研究进展[J]. 国外医学: 遗传学分册, 2008, 28(6): 332-335.
[11]Darnell J E Jr. Transcription factors as targets for cancer therapy[J]. Nat Rev Cancer, 2002, 2(10): 740-749. DOI: 10.1038/nrc906
[12]Ye F, Li Y, Hu Y, et al. Expression of Sox2 in human ovarian epithelial carcinoma[J]. J Cancer Res Clin Oncol, 2011, 137(1): 131-137. DOI: 10.1007/s00432-010-0867-y
[13]Sholl L M, Barletta J A, Yeap B Y, et al. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma[J]. Am J Surg Pathol, 2010, 34(8): 1193-1198.
[14]Lengerke C, Fehm T, Kurth R, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma[J]. BMC Cancer, 2011, 11: 42.
[15]Schmitz M, Temme A, Senner V, et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy[J]. Br J Cancer, 2007, 96(8): 1293-1301. DOI: 10.1038/sj.bjc.6603696
[16]Chen Y, Shi L, Zhang L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer[J]. J Biol Chem, 2008, 283(26): 17969-17978.
[17]Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells[J]. Oncogene, 2012, 31(11): 1354-1365.
[18]Zaha D C. Significance of immunohistochemistry in breast cancer[J]. World J Clin Oncol, 2014, 5(3): 382-392. DOI: 10.5306/wjco.v5.i3.382 
[19]Nonaka D. Differential expression of SOX2 and SOX17 in testicular germ cell tumors[J]. Am J Clin Pathol, 2009, 131(5): 731-736. DOI: 10.1309/AJCP7MNCNBCRN8NO
[20]Chen S, Xu Y, Chen Y, et al. SOX2 gene regulates the transcriptional network of oncogenes and affects and tumorigenesis of human lung cancer cells[J]. PLoS One, 2012, 7(5): e36326. DOI: 10.1371/journal.pone.0036326 
[21]Qiu H B,Zhang L Y, Ren C,et al. Targeting CDH17 suppresses tumor progression in gastric cancer by downregulating Wnt/β-catenin signaling [J]. PLoS ONE, 2013, 8(3): e56959. DOI: 10.1371/journal.pone.0056959
[22]Zhang Y, Eades G, Yao Y, et al. Estrogen receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2[J]. J Biol Chem, 2012, 287(49): 41514- 41522. DOI: 10.1074/jbc.M112.404871
[23]Lou H, Dean M. Targeted therapy for cancer stem cells:the patched pathway and ABC transporters[J].Oncogene,2007,26(9):1357-1360.

相似文献/References:

[1]范婷婷,唐良萏.Nek2基因沉默对卵巢癌SKOV3细胞侵袭能力的影响[J].第三军医大学学报,2012,34(15):1514.
 Fan Tingting,Tang Liangdan.Silencing Nek2 via RNAi suppresses invasiveness in ovarian cancer SKOV3 cells[J].J Third Mil Med Univ,2012,34(01):1514.
[2]梁佳,林力,寿铸,等.鼻咽癌畸胎瘤细胞源性生长因子表达及siRNA对HNE-1细胞株增殖的抑制[J].第三军医大学学报,2012,34(15):1572.
 Liang Jia,Lin Li,Shou Zhu,et al.Expression of PCDGF in nasopharyngeal carcinoma and its silencing in cell proliferation[J].J Third Mil Med Univ,2012,34(01):1572.
[3]刘丹,尹东,汤蕾,等.LPS预处理对心肌细胞缺氧/复氧损伤的保护作用[J].第三军医大学学报,2012,34(17):1707.
 Liu Dan,Yin Dong,Tang Lei,et al.Protective effect of lipopolysaccharide pretreatment on cardiomyocytes anoxia/reoxygenation injury[J].J Third Mil Med Univ,2012,34(01):1707.
[4]赵亮,高蕊,刘菁,等.异位表达FOXO4对胃癌细胞凋亡的影响[J].第三军医大学学报,2015,37(18):1830.
 Zhao Liang,Gao Rui,Liu Jing,et al.Effects of ectopic expression of Forkhead box O4 on cell apoptosis in human gastric cancer cells[J].J Third Mil Med Univ,2015,37(01):1830.
[5]黄士隋,史良会,黄广岩.RNA干扰下调LAT1表达对胃腺癌SGC-7901细胞增殖、侵袭、转移及细胞周期的影响[J].第三军医大学学报,2013,35(04):320.
 Huang Shisui,Shi Lianghui,Huang Guangyan.Effect of RNA interference targeting LAT1 on proliferation, migration and invasion of SGC7901 cells[J].J Third Mil Med Univ,2013,35(01):320.
[6]党微旗,唐浩,曹红,等.可调控STAT3干扰载体抑制BIU-87细胞侵袭的体外研究[J].第三军医大学学报,2013,35(05):400.
 Dang Weiqi,Tang Hao,Cao Hong,et al.Effect of CRE-dependent RNA interference targeting STAT3 on invasion and migration in human bladder cancer BIU-87 cells[J].J Third Mil Med Univ,2013,35(01):400.
[7]张彦,郑晓东,唐鹏,等.Sphk1基因对人乳腺癌MCF-7细胞增殖、凋亡和迁移能力的影响[J].第三军医大学学报,2012,34(21):2141.
 Zhang Yan,Zheng Xiaodong,Tang Peng,et al.Sphk1 interference suppresses proliferation, apoptosis and migration in human MCF-7 breast cancer cells[J].J Third Mil Med Univ,2012,34(01):2141.
[8]王勇,唐川,兰曦,等.沉默CD133基因对CD133+肝癌干细胞放射敏感性的影响[J].第三军医大学学报,2012,34(23):2373.
 Wang Yong,Tang Chuan,Lan Xi,et al.RNAi targeting CD133 enhances radiosensitivity in CD133 positive liver cancer stem cells[J].J Third Mil Med Univ,2012,34(01):2373.
[9]赵亮,李静,魏强,等.人PGI基因siRNA慢病毒质粒的构建及对白血病细胞增殖的影响[J].第三军医大学学报,2013,35(01):20.
 Zhao Liang,Li Jing,Wei Qiang,et al.Construction of a lentiviral vector expressing human phosphoglucose isomerase gene siRNA and its influence on leukemia cell proliferation[J].J Third Mil Med Univ,2013,35(01):20.
[10]熊震,汤旭东,房殿春,等.人肝素酶RNAi序列的筛选及鉴定[J].第三军医大学学报,2007,29(20):1929.
 XIONG Zhen,TANG Xu-dong,FANG Dian-chun,et al.Screening and identification of heparanase RNAi sequence[J].J Third Mil Med Univ,2007,29(01):1929.

更新日期/Last Update: 2016-01-06