[1]王直兵,张瑗,张峡,等.移行结构化细胞-肌腱复合物重建韧带-骨连接体的实验研究[J].第三军医大学学报,2015,37(19 ):1936-1941.
 Wang Zhibing,Zhang Yuan,Zhang Xia,et al.Reconstruction of ligament-bone interface by a tissue-engineered cell-tendon complex with characteristics of transitional architecture and its efficacy in rabbits[J].J Third Mil Med Univ,2015,37(19 ):1936-1941.
点击复制

移行结构化细胞-肌腱复合物重建韧带-骨连接体的实验研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第19期
页码:
1936-1941
栏目:
专题报道
出版日期:
2015-10-15

文章信息/Info

Title:
Reconstruction of ligament-bone interface by a tissue-engineered cell-tendon complex with characteristics of transitional architecture and its efficacy in rabbits
作者:
王直兵 张瑗 张峡 郝勇 张玉梅 周跃
第三军医大学新桥医院骨科
Author(s):
Wang Zhibing Zhang Yuan Zhang Xia Hao Yong Zhang Yumei Zhou Yue

Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

关键词:
韧带-骨界面脱细胞肌腱移行结构组织工程
Keywords:
ligament-bone interface decellularized tendon transition tissue engineering rabbits
分类号:
R318.08; R329.2; R686.505
文献标志码:
A
摘要:

目的      观察体外构建的具有连续异质性移行结构的细胞-肌腱复合物重建兔前交叉韧带(anterior cruciate ligament, ACL)在动物体内的愈合效果。      方法      通过胶原水凝胶将异质性细胞群种植于脱细胞兔跟腱支架内特定的区域, 构建一种具有纤维形成、软骨形成及骨形成3个功能区域的细胞-肌腱复合物重建兔ACL, 8周后进行组织学、显微CT、免疫荧光分析检测移植物与骨隧道间预先设定区域内特定组织的梯度形成情况。      结果      组织学及免疫荧光结果显示,软骨标志物GAG、COL2A1只在软骨段内生成,而骨标志物钙结节、OCN只在成骨段内生成,关节腔内纤维生成段内新生的胶原纤维相互连接,有效地修复了支架的胶原结构。显微CT结果显示,与对照组相比,实验组骨隧道腔内大量新生矿化组织形成。该细胞-肌腱复合物重建兔ACL 8周后,在骨隧道-关节腔界面表现出纤维-纤维软骨-骨的结构渐变现象。      结论      该细胞-肌腱复合物重建兔ACL,骨隧道-肌腱界面愈合良好,微观结构与生理性ACL-骨界面极其相似,有望应用于ACL的损伤后重建。

Abstract:

Objective      To reconstruct anterior cruciate ligament by a composite cell-tendon scaffold with a continuous and heterogeneous transitional region to mimic native ligament insertion site in rabbits and observe the outcome.        Methods      Heterogeneous cell populations with collagen gel were seeded within specific regions of decellularized rabbit Achilles tendons to fabricate a stratified scaffold containing 3 biofunctional regions to support fibrogenesis, chondrogenesis, and osteogenesis. A total of 24 male rabbits were inflicted with ACL resection in one hind limb and then followed grafted with our obtained ACL, and the other hind limb receiving sham operation served as control. In 8 weeks later, histological staining, micro-CT scanning and immunofluorescence assay were carried out to observe the growth of the graft with bone tunnel.        Results      Histological staining and immunofluorescence assay demonstrated that the cartilage-related markers, glucosamine glycolic acid and collagen 2A1, were found only in the chondrogenesis region, but bone-related protein, osteocalcin, was only in the osteogenesis region of bone tunnel, and fibrosis was remarkable for the fibrogenesis region in the joint cavity. Micro-CT scanning showed that the newly formed mineralized tissue was detected in the bone tunnels in the experimental group compared with controls. These results suggest that the ACL was reconstructed with the cell-tendon complex in 8 weeks after transportation, and the transitional architecture with ligament-fibrocartilage-bone was constructed in the ligament-bone tunnel interface.        Conclusion        Our ACL is reconstructed successfully with the cell-tendon complex after 8 weeks. The transitional architecture with ligament-fibrocartilage-bone is constructed in the ligament-bone tunnel interface, which can be applied for the regeneration of the ligament-bone interface.

参考文献/References:

[1]Moffat K L, Sun W H, Pena P E, et al. Characterization of the structure-function relationship at the ligament-tobone interface[J]. Proc Natl Acad Sci U S A, 2008, 105(23): 7947-7952.
[2]Spalazzi J P, Gallina J, Fung-Kee-Fung S D, et al. Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions[J]. J Orthop Res, 2006, 24(10):  2001-2010.
[3]Subit D, Masson C, Brunet C, et al. Microstructure of the ligament-to-bone attachment complex in the human knee joint[J]. J Mech Behav Biomed Mater, 2008, 1(4): 360-367.
[4]Wang Z, Zhang Y, Zhu J, et al. In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface[J]. J Biomater Appl, 2015, 29(8): 1180-1192.
[5]Rossi L, Boccardo F, Corvo R. Endothelial cells increase the radiosensitivity of oropharyngeal squamous carcinoma cells in collagen gel[J]. Oral Oncol, 2004, 40(2):  214-222.
[6]Lui P, Zhang P, Chan K, et al. Biology and augmentation of tendon-bone insertion repair[J]. J Orthop Surg Res, 2010, 5: 59.
[7]Lu H H, Subramony S D, Boushell M K, et al. Tissue engineering strategies for the regeneration of orthopedic interfaces[J]. Ann Biomed Eng, 2010, 38(6): 2142-2154.
[8]Cao D, Liu W, Wei X, et al. In vitro tendon engineering with avian tenocytes and polyglycolic acids:  a preliminary report[J]. Tissue Eng, 2006, 12(5):  1369-1377.
[9]Whitlock P W, Smith T L, Poehling G G, et al. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration[J]. Biomaterials, 2007, 28(29):  4321-4329.
[10]Crapo P M, Gilbert T W, Badylak S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12):  3233-3243.
[11]Brown B N, Valentin J E, Stewart-Akers A M, et al. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component[J]. Biomaterials, 2009, 30(8):  1482-1491.
[12]解传飚, 林月秋, 阮默, 等. EDC交联改性的脱细胞异种(猪)肌腱生物学特性研究[J]. 中国临床解剖学杂志, 2010, 28(4):  425-429.
[13]冷元曦, 林月秋, 阮默, 等. 肌腱移植材料的研究进展[J]. 中国矫形外科杂志, 2009, 17(22):  1704-1706.
[14]Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering[J]. Tissue Eng Part C Methods, 2010, 16(5):  1201-1211.
[15]胡成栋, 刘曦, 张伯勋, 等. 脱细胞鸡肌腱的制备与体外生物力学测定的实验研究[J]. 河北医药, 2011, 33(18):  2761-2763.
[16]梁黎明, 柴家科, 杨红明, 等. 脱细胞肌腱制备的实验研究[J]. 中国美容医学, 2006, 15(3):  239-240.
[17]王直兵, 张峡, 郭新宇, 等. 脱细胞跟腱复合人成纤维细胞共培养的实验研究[J].中国修复重建外科杂志, 2013, 27(7): 805-809.
[18]Ni M, Rui YF, Tan Q, et al. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells[J]. Biomaterials, 2013, 34(8):  2024-2037.
[19]He J, Zhang W, Liu Y, et al. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation[J]. Mater Sci Eng C Mater Biol Appl, 2015, 50:  12-18.
[20]Li X, He J, Bian W, et al. A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction:  an off-the shelf alternative to a bone-tendon-bone autograft[J]. Biofabrication, 2014, 6(1):  015010.
[21]Li X, He J, Bian W, et al. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction-safety and efficacy in a porcine model[J]. Acta Biomater, 2014, 10(8):  3696-3704.
[22]Dormer N H, Berkland C J, Detamore M S. Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces[J]. Ann Biomed Eng, 2010, 38(6): 2121-2141.
[23]Bi Y, Ehirchiou D, Kilts T M, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J]. Nat Med, 2007, 13(10): 1219-1227.
[24]Spalazzi J P, Dagher E, Doty S B, et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration[J]. J Biomed Mater Res A, 2008, 86(1):  1-12.

更新日期/Last Update: 2015-09-28