[1]唐北川,任先军,邹喜红.连续两节段颈椎hybrid手术的有限元法生物力学对比分析[J].第三军医大学学报,2015,37(08 ):809-815.
 Tang Beichuan,Ren Xianjun,Zou Xihong.Finite element analysis of biomechanical comparison of cervical hybrid surgery in continuous two-level segments[J].J Third Mil Med Univ,2015,37(08 ):809-815.
点击复制

连续两节段颈椎hybrid手术的有限元法生物力学对比分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第08期
页码:
809-815
栏目:
论著
出版日期:
2015-04-30

文章信息/Info

Title:
Finite element analysis of biomechanical comparison of cervical hybrid surgery in continuous two-level segments
作者:
唐北川任先军邹喜红
第三军医大学新桥医院骨科;重庆理工大学车辆工程学院
Author(s):
Tang Beichuan Ren Xianjun Zou Xihong

Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037; Vehicle Engineering, Chongqing University of Technology, Chongqing, 400054, China

关键词:
颈椎间盘置换生物力学有限元 hybrid手术
Keywords:
artificial cervical disc replacement biomechanics finite element method hybrid surgery
分类号:
R318.01;R681.53;R687.4
文献标志码:
A
摘要:

目的      利用有限元法对比分析连续两节段颈椎人工椎间盘置换联合节段融合手术(hybrid手术)后颈椎的生物力学特性。      方法      建立C2~T1有限元模型。应用Prestige-LP假体模拟置换,以前路钢板系统加松质骨融合模拟节段融合,构建C3~C5、C4~C6、C5~C7共6组hybrid手术(C3~C4置换联合C4~C5融合、C3~C4融合联合C4~C5置换,C4~C5置换联合C5~C6融合、C4~C5融合联合C5~C6置换,C5~C6置换联合C6~C7融合、C5~C6融合联合C6~C7置换)。对应的组间比较置换节段的椎间活动度(range of motion,ROM)、小关节应力(Mises应力)的差异和变化趋势。      结果      ①C3~C5 hybrid手术:前屈、后伸、轴转、侧弯时置换节段的ROM增加,C3~C4置换分别增加119%、186%、208%、173%;C4~C5置换分别增加142%、262%、251%、164%。后伸、轴转、侧弯时置换节段小关节Mises应力增加,C3~C4置换分别增加256%、187%、185%;C4~C5置换分别增加50%、54%、124%。②C4~C6 hybrid手术:在前屈、后伸、轴转、侧弯时置换节段的ROM增加,C4~C5置换分别增加107%、200%、238%、145%;C5~C6置换分别增加65%、130%、147%、111%。C4~C5置换小关节Mises应力在后伸、轴转、侧弯时分别增加20%、53%、111%;C5~C6置换小关节Mises应力在后伸时降低8%,轴转、侧弯时分别增加297%、60%。③C5~C7 hybrid手术:在前屈、后伸、轴转、侧弯时置换节段的ROM增加,C5~C6置换分别增加77%、167%、179%、122%;C6~C7置换分别增加84%、268%、324%、230%。C5~C6置换节段小关节Mises应力在轴转、侧弯时分别增加267%、63%;C6~C7置换节段小关节Mises应力在前屈、后伸、轴转、侧弯时分别增加202%、155%、204%、145%。      结论      hybrid手术中置换节段的ROM和小关节Mises应力均有增加。选择生理活动度较大的节段予以置换,而相对较小的节段予以融合,这种hybrid组合方式对颈椎生物力学的影响较小。

Abstract:

Objective      To comparatively analyze biomechanical characteristics of cervical hybrid surgery (artificial cervical disc replacement combined with segmental fusion) in continuous two-level with finite element method.        Methods      C2~T1 finite element model was established to simulate arthroplasty by Prestige-LP prosthesis, and arthrodesis by anterior plate/screw/allograft in C3~C5, C4~C6 and C5~C7 segments. The difference and change trend of range of motion (ROM) and stress of facet joint (Von Mises stress, Mises stress) of corresponding hybrid surgery were compared.        Results      (1) With C3~C5 hybrid surgery, the ROM of C3~C4 segments was increased by 119%, 186%, 208%, and 173% in flexion, extension, axial rotation, and lateral bending, respectively, while that of C4~C5 segments was increased by 142%, 262%, 251%, and 164%, respectively. The facet Mises stress of C3~C4 segments was increased by 256%, 187%, and 185% in extension, axial rotation, and lateral bending, respectively, while that of C4~C5 segments was increased by 50%, 54%, and 124%, respectively. (2) With C4~C6 hybrid surgery, the ROM of C4~C5 segments was increased by 107%, 200%, 238%, and 145% in flexion, extension, axial rotation, and lateral bending, respectively, while that of C5~C6 segments was increased by 65%, 130%, 147%, and 111%, respectively. The facet Mises stress of C4~C5 segments was increased by 20%, 53%, and 111% in extension, axial rotation, and lateral bending, respectively, while that of C5~C6 segments was reduced by 8% in extension, and increased by 297% and 60% in rotation and later bending, respectively. (3) With C5~C7 hybrid surgery, the ROM of C5~C6 segments was increased by 77%, 167%, 179%, and 122% in flexion, extension, axial rotation, and lateral bending, respectively, and that of C6~C7 segments was increased by 84%, 268%, 324%, and 230%, respectively. The facet Mises stress of C5~C6 segments was increased by 267% and 63% in axial rotation and lateral bending, respectively; while that of C6~C7 segments was increased by 202%, 155%, 204%, and 145% in flexion, extension, axial rotation, and lateral bending, respectively.       Conclusion      The ROM and Mises stress of the replacement segments in the hybrid surgery are increased. The segments with larger ROM are selected for arthroplasty while the segments with smaller ROM are selected for arthrodesis, and the hybrid surgery has less effect on the cervical biomechanics.

参考文献/References:

[1]Hilibrand A S, Carlson G D, Palumbo M A, et al. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis[J]. J Bone Joint Surg Am, 1999, 81(4): 519-528.
[2]Ragab A A, Escarcega A J, Zdeblick T A. A quantitative analysis of strain at adjacent segments after segmental immobilization of the cervical spine[J]. J Spinal Disord Tech, 2006, 19(6): 407-410.
[3]Shin D A, Yi S, Yoon D H, et al. Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease[J]. Spine (Phila Pa 1976), 2009, 34(11): 1153-1159, 1160-1161.
[4]Hey H W, Hong C C, Long A S, et al. Is hybrid surgery of the cervical spine a good balance between fusion and arthroplasty? Pilot results from a single surgeon series[J]. Eur Spine J, 2013, 22(1): 116-122.
[5]Zhao Y, Li Q, Mo Z, et al. Finite element analysis of cervical arthroplasty combined with fusion against 2-level fusion[J]. J Spinal Disord Tech, 2013, 26(6): 347-350.
[6]Lee M J, Dumonski M, Phillips F M, et al. Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion[J]. Spine (Phila Pa 1976), 2011, 36(23): 1932-1939.
[7]Standring S. Gray's Anatomy: the anatomical basis of clinical practice[M]. 40th ed. Edinburgh: Churchill Livingstone, 2008, 712-734.
[8]Kode S, Kallemeyn N A, Smucker J D, et al. The effect of multi-level laminoplasty and laminectomy on the biomechanics of the cervical spine: a finite element study[J]. Iowa Orthop J, 2014, 34: 150-157.
[9]Kang H, Park P, La-Marca F, et al. Analysis of load sharing on uncovertebral and facet joints at the C5~6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study[J]. Neurosurg Focus, 2010, 28(6): E9.
[10]Mo Z J, Zhao Y B, Wang L Z, et al. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue[J]. Eur Spine J, 2014, 23(3): 613-621.
[11]Moroney S P, Schultz A B, Miller J A, et al. Load-displacement properties of lower cervical spine motion segments[J]. J Biomech, 1988, 21(9): 769-779.
[12]Panjabi M M, Crisco J J, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves[J]. Spine (Phila Pa 1976), 2001, 26(24): 2692-2700.
[13]Finn M A, Brodke D S, Daubs M, et al. Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty[J]. Eur Spine J, 2009, 18(10): 1520-1527.
[14]Barrey C, Campana S, Persohn S, et al. Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: an in vitro investigation[J]. Eur Spine J, 2012, 21(3): 432-442.
[15]Lee S B, Cho K S, Kim J Y, et al. Hybrid surgery of multilevel cervical degenerative disc disease: review of literature and clinical results[J]. J Korean Neurosurg Soc, 2012, 52(5): 452-458.
[16]Peng C W, Yue W M, Basit A, et al. Intermediate Results of the Prestige LP Cervical Disc Replacement: Clinical and Radiological Analysis With Minimum Two-Year Follow-up[J]. Spine (Phila Pa 1976), 2011, 36(2): E105-E111.
[17]Cho B Y, Lim J, Sim H B, et al. Biomechanical analysis of the range of motion after placement of a two-level cervical ProDisc-C versus hybrid construct[J]. Spine (Phila Pa 1976), 2010, 35(19): 1769-1776.
[18]Cunningham B W, Hu N, Zorn C M, et al. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics[J]. Spine J, 2010, 10(4): 341-349.
[19]Faizan A, Goel V K, Biyani A, et al. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine: a finite element based study[J]. Clin Biomech (Bristol, Avon), 2012, 27(3): 226-233.
[20]Chang U K, Kim D H, Lee M C, et al. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion[J]. J Neurosurg Spine, 2007, 7(1): 33-39.
[21]White A A, Panjabi M M. Clinical Biomechanics of the Spine[M]. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 1990, 86-117.
[22]Ren X, Chu T, Jiang T, et al. Cervical Disc Replacement Combined With Cage Fusion for the Treatment of Multi-level Cervical Disc Herniation[J]. J Spinal Disord Tech, 2012, [Epub ahead of print].
[23]Cardoso M J, Mendelsohn A, Rosner M K. Cervical hybrid arthroplasty with 2 unique fusion techniques[J]. J Neurosurg Spine, 2011, 15(1): 48-54.
[24]Barbagallo G M, Assietti R, Corbino L, et al. Early results and review of the literature of a novel hybrid surgical technique combining cervical arthrodesis and disc arthroplasty for treating multilevel degenerative disc disease: opposite or complementary techniques?[J]. Eur Spine J, 2009, 18 Suppl 1: 29-39.

相似文献/References:

[1]刘瑶瑶,代飞,孙东,等.不同量骨水泥强化新型空心椎弓根螺钉的体外生物力学研究[J].第三军医大学学报,2012,34(16):1626.
 Liu Yaoyao,Dai Fei,Sun Dong,et al.Influence of the volume of bone cement on the reinforcement of a novel canulated pedicle screw: a biomechanical study in vitro[J].J Third Mil Med Univ,2012,34(08 ):1626.
[2]郑琦,应小樟,石仕元,等.复杂性腰椎管狭窄症的有限元建模与分析[J].第三军医大学学报,2012,34(18):1897.
 Zheng Qi,Ying Xiaozhang,Shi Shiyuan,et al.Finite element modeling and analysis of complicated lumbar spinal stenosis[J].J Third Mil Med Univ,2012,34(08 ):1897.
[3]何斌,胡侦明,郝杰,等.后部不同结构切除对胸椎稳定性的影响[J].第三军医大学学报,2012,34(20):2101.
 He Bin,Hu Zhenming,Hao Jie,et al.Biomechanical roles of posterior different structures in stability of thoracic spine in vitro[J].J Third Mil Med Univ,2012,34(08 ):2101.
[4]陈秀明,艾国平,粟永萍,等.新型异黄酮类化合物对去势大鼠股骨生物力学性能影响的实验研究[J].第三军医大学学报,2007,29(11):1039.
 CHEN Xiu-ming,AI Guo-ping,SU Yong-ping,et al.Effect of a novel isoflavone compound on femoral biomechanics of ovarectomied rats[J].J Third Mil Med Univ,2007,29(08 ):1039.
[5]马双陶,陈卫军.人跖肌腱的力学性质测试与组织学观察[J].第三军医大学学报,2007,29(19):1889.
 MA Shuang-tao,CHEN Wei-jun.Biomechanical test and histological observation of human plantaris tendon[J].J Third Mil Med Univ,2007,29(08 ):1889.
[6]李东亮,王如文,蒋耀光,等.肺减容术对肺气肿兔膈肌生物力学的影响[J].第三军医大学学报,2005,27(04):337.
[7]苏正林,许民辉,赖西南,等.枪弹射击致防弹衣后长白猪远达脑组织损伤特点及其机制[J].第三军医大学学报,2011,33(19):1995.
 Su Zhenglin,Xu Minhui,Lai Xinan,et al.Characteristics and mechanism of behind armour blunt trauma in Landrace brain[J].J Third Mil Med Univ,2011,33(08 ):1995.
[8]郑必祥,彭代智,左海斌,等.巴马小型猪与人真皮的组织形态学和生物力学基本特征比较研究[J].第三军医大学学报,2010,32(08):754.
 Zheng Bixiang,Peng Daizhi,Zuo Haibin,et al.Comparative study on dermal histomorphologic and biomechanical properties between Bama miniature pig and human[J].J Third Mil Med Univ,2010,32(08 ):754.
[9]钦斌,黄永火,欧阳羽,等.轴向应力作用下的舟骨有限元分析[J].第三军医大学学报,2010,32(11):1213.
 Qin Bin,Huang Yonghuo,Ouyang Yu,et al.Finite element analysis in scaphoid bone under action of axial stress[J].J Third Mil Med Univ,2010,32(08 ):1213.
[10]崔猛,牛银波,刘广兴,等.氯化锂对尾吊大鼠骨丢失的防护作用[J].第三军医大学学报,2010,32(14):1512.
 Cui Meng,Niu Yinbo,Liu Guangxing,et al.Protective effects of lithium chloride on bone loss in hindlimb unloading rats[J].J Third Mil Med Univ,2010,32(08 ):1512.

更新日期/Last Update: 2015-04-20