[1]石小花,张一鸣,周鑫,等.硅橡胶的表面性能与细菌黏附的关系[J].第三军医大学学报,2015,37(19 ):1921-1925.
 Shi Xiaohua,Zhang Yiming,Zhou Xin,et al.Relationship of surface properties of silicone rubber with bacteria adhesion[J].J Third Mil Med Univ,2015,37(19 ):1921-1925.
点击复制

硅橡胶的表面性能与细菌黏附的关系(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第19期
页码:
1921-1925
栏目:
专题报道
出版日期:
2015-10-15

文章信息/Info

Title:
Relationship of surface properties of silicone rubber with bacteria adhesion
作者:
石小花张一鸣周鑫陈兴樊东力
第三军医大学新桥医院整形美容科
Author(s):
Shi Xiaohua Zhang Yiming Zhou Xin Chen Xing Fan Dongli

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

关键词:
生物材料感染细菌黏附表面性能亲/疏水性
Keywords:
biomaterials infectionbacterial adhesionsurface propertieshydrophilicity/hydrophobicity
分类号:
R312; R318.08; R62
文献标志码:
A
摘要:

目的      研究硅橡胶的表面性能变化对细菌黏附的影响。      方法      采用细菌培养和菌落技术对普通硅橡胶(silicon rubber,SR)、碳-硅橡胶(carbon ion implanted silicon rubber, C-SR)和羟基磷灰石涂层硅橡胶(hydroxyapatite coating silicone rubber, HA/SR)表面细菌黏附情况进行分析,通过扫描电镜(scanning electron microscope,SEM)对材料表面的形貌进行观察,采用X射线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)、X射线衍射光谱仪(XRD)、傅里叶红外光谱仪(Fourier transform infrared spectrometer,FTIR)对材料表面的分子结构进行分析,同时对材料表面的粗糙度以及亲/疏水性(水接触角)进行检测。      结果      普通硅橡胶(SR)表面细菌黏附最多[(2.11±0.12)×105CFU],羟基磷灰石涂层硅橡胶(hydroxyapatite coating silicone rubber, HA/SR)次之[(1.88±0.88)×105CFU],碳-硅橡胶(carbon ion implanted silicon rubber, C-SR)表面细菌黏附最少[(0.98±0.35)×105CFU],C-SR组细菌黏附明显少于SR组(P<0.05),HA/SR组细菌黏附较SR组有所减少,但是差异无统计学意义(P>0.05);材料的表面亲/疏水性与细菌黏附呈相似趋势;而表面粗糙度的变化与细菌黏附趋势不一致。      结论      硅橡胶表面的亲/疏水性可能是影响细菌黏附的主要因素。

Abstract:

Objective      To investigate the relationship of the surface properties of silicone rubber with bacterial adhesion in order to provide theoretical basis to prevent infection of bio-implants.       Methods      Bacterial culture and colony formation counting were used to analyze the bacterial adhesion on the surface of ordinary silicon rubber (SR), carbon ion implanted silicon rubber (C-SR), and hydroxyapatite coating silicone rubber (HA/SR). Scanning electron microscopy (SEM) was used to observe the morphology of the substrate surface. The molecular structures of the surface were analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectrometry (FTIR). Meanwhile, the hydrophilic/hydrophobic properties of substrate surface were detected by water contact angle test.       Results       The number of bacteria adhered to the surface was largest in the SR[(2.11±0.12)×105CFU], followed by HA/SR[(1.88±0.88)×105CFU], and then C-SR[(0.98±0.35)×105CFU]. Significant difference was seen in the bacterial count between C-SR and SR (P<0.05), but not between HA/SR and SR (P>0.05). Similar trend was also in the hydrophilic/hydrophobic properties, but not in the surface roughness.       Conclusion       Hydrophilic/hydrophobic properties may play an important role for bacterial adhesion on the biomaterial surface.

参考文献/References:

[1]Subbiahdoss G, Aleyt T, Kuijer R, et al. Influence of prophylactic antibiotics on tissue integration versus bacterial colonization on poly(methyl methacrylate)[J]. Int J Artif Organs, 2012, 35(10):  840-846.
[2]Ludecke C, Jandt K D, Siegismund D, et al. Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter[J]. PLoS One, 2014, 9(1):  e84837.
[3]Sanders D L, Kingsnorth A N, Lambie J, et al. An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh[J]. Surg Endosc, 2013, 27(3):  978-985.
[4]Xu L C, Siedlecki C A. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation[J]. Acta Biomater, 2012, 8(1):  72-81.
[5]Levon J, Myllymaa K, Kouri V P, et al. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon[J]. J Biomed Mater Res A, 2010, 92(4):  1606-1613.
[6]Rochford E T, Poulsson A H, Salavarrieta-Varela J, et al. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface[J]. Colloids Surf B Biointerfaces, 2014, 113:  213-222.
[7]Wang S L, Shi X H, Yang Z, et al. Osteopontin (OPN) is an important protein to mediate improvements in the biocompatibility of C ion-implanted silicone rubber[J]. PLoS One, 2014, 9(6):  e98320.
[8]Shi X H, Wang S L, Zhang Y M, et al. Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it maybe through the interaction of EF1β and γ-actin[J]. PLoS One, 2014, 9(11):  e111503.
[9]Siegismund D, Schroeter A, Ludecke C, et al. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces:  application of point pattern analysis[J]. Biofouling, 2014, 30(9):  1023-1033.
[10]Kodjikian L, Roques C, Pellon G, et al. Bacterial adhesion to intraocular lenses and endophthalmitis prevention:  review of the literature[J]. J Fr Ophtalmol, 2006, 29(1):  74-81.
[11]Ji Y W, Cho Y J, Lee C H, et al. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses[J]. Eye Contact Lens, 2015, 41(1): 25-33.
[12]Truong V K, Lapovok R, Estrin Y S, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium[J]. Biomaterials, 2010, 31(13): 3674-3683.
[13]Parreira P, Magalhaes A, Goncalves I C, et al. Effect of surface chemistry on bacterial adhesion, viability, and morphology[J]. J Biomed Mater Res A, 2011, 99(3): 344-353.
[14]Tegoulia V A, Cooper S L. Staphylococcusaureus adhesion to self-assembled monolayers:  effect of surface chemistry and fibrinogen presence[J]. Colloids Surf B Biointerfaces, 2002, 24(3/4):  217-228.
[15]Shi L, Ardehali R, Caldwell K D, et al. Mucin coating on polymeric material surfaces to suppress bacterial adhesion[J]. Colloids Surf B Biointerfaces, 2000, 17(4): 229-239.
[16]Vadillo-Rodríguez V, Pacha-Olivenza M A, Gonzalez-Martin M L, et al. Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment[J]. J Biomed Mater Res A, 2013, 101(5): 1397-1404.

相似文献/References:

[1]彭文丽,毕小云.血清可溶性共刺激因子CTLA-4和CD28在乙型肝炎患者血清中的表达及意义[J].第三军医大学学报,2013,35(01):82.
[2]毛青.科学认识H7N9, 有效防控人感染禽流感病毒[J].第三军医大学学报,2013,35(08):693.
 Mao Qing.Scientific understanding of avian influenza A H7N9 virus to effectively prevent and control of its infection[J].J Third Mil Med Univ,2013,35(19 ):693.
[3]王占科,柴长春,何凤田,等.创伤死亡不同血糖水平患者存活时间、感染率和MODS发生率病历调查[J].第三军医大学学报,2006,28(01):75.
[4]王克霞,朱玉霞,陈琳.腹泻患者中溶组织内阿米巴感染的实验检测分析[J].第三军医大学学报,2006,28(14):2.
[5]李建媛.锁骨下静脉置管感染与留置时间的关系及护理对策[J].第三军医大学学报,2006,28(13):1449.
[6]蒋建新.创伤患者院内感染:危险因素与对策[J].第三军医大学学报,2009,31(01):13.
[7]杜本军,高建华,苏冰.阴茎再造术后感染的预防及处理[J].第三军医大学学报,2009,31(15):1514.
[8]彭刚,舒茂琴,宋治远,等.起搏器囊袋破溃12例临床分析[J].第三军医大学学报,2011,33(16):1758.
 Peng Gang,Shu Maoqin,Song Zhiyuan,et al.Pacemaker bag erosion in 12 patients: a clinical analysis[J].J Third Mil Med Univ,2011,33(19 ):1758.
[9]高蕾,陈幸华,孔佩艳,等.X-连锁无丙种球蛋白血症1例[J].第三军医大学学报,2005,27(12):1265.
[10]闫涛,季伟,王慧芬.丙型肝炎病毒感染至肝硬变进程影响因素的分析[J].第三军医大学学报,2005,27(07):672.

更新日期/Last Update: 2015-09-28