[1]周鑫,陈兴,石小花,等.银离子表面注入改性硅橡胶抗菌性能及生物相容性的初步研究[J].第三军医大学学报,2015,37(19 ):1914-1920.
 Zhou Xin,Chen Xing,Shi Xiaohua,et al.Antibacterial property and biocompatibility of silver ion implanted silicone rubber[J].J Third Mil Med Univ,2015,37(19 ):1914-1920.
点击复制

银离子表面注入改性硅橡胶抗菌性能及生物相容性的初步研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第19期
页码:
1914-1920
栏目:
专题报道
出版日期:
2015-10-15

文章信息/Info

Title:
Antibacterial property and biocompatibility of silver ion implanted silicone rubber
作者:
周鑫陈兴石小花王韶亮雷泽源樊东力张一鸣
第三军医大学新桥医院整形美容科
Author(s):
Zhou Xin Chen Xing Shi Xiaohua Wang Shaoliang Lei Zeyuan Fan Dongli Zhang Yiming

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

关键词:
硅橡胶离子注入银离子表面注入改性抗菌性生物相容性
Keywords:
silicone rubber ion implantation silver ion surface modification antibacterial property biocompatibility
分类号:
R312; R318.08; R62
文献标志码:
A
摘要:

目的      采用银离子对普通硅橡胶进行表面注入改性,以期制备一种抗菌性能及生物相容性良好的整形填充材料。      方法      用高能离子注入机向普通硅橡胶表面注入银离子,对改性后的硅橡胶采用扫描电子显微镜(scanning electron microscope,SEM)、X射线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)、傅里叶红外光谱仪(Fourier transform infrared spectrometer,FTIR)以及水接触角检测仪对表面形貌、元素组成、化学结构以及亲/疏水性进行检测。选用大肠杆菌进行抑菌圈、抗细菌黏附性实验,初步探究其抗菌性能。采用体外及体内实验对生物相容性进行评价。      结果      SEM观察各材料的表面形貌无明显差异;XPS结果显示银离子已注入材料表面;FTIR观察各材料图谱无明显变化;水接触角检测结果显示,银离子注入硅橡胶水接触角随注入剂量加大而逐渐变小,逐渐呈现出亲水性趋势。抑菌圈结果显示银离子注入硅橡胶可以使抑菌圈直径>7 mm,呈现出抑菌效果;抗细菌黏附性实验显示,改性硅橡胶具有明显的抗菌性。生物相容性评价显示,与普通硅橡胶比,银离子注入硅橡胶均有较好的特性。      结论      采用银离子注入技术对硅橡胶进行表面改性可以明显提高硅橡胶的亲水性能和抗菌能力以及生物相容性。

Abstract:

Objective      To change the surface of silicone rubber by silver ion implantation technology in order to obtain an implantable silicone rubber with antibacterial property and good biocompatibility.       Methods      High-energy ion implantation machine was used for the silver ion implantation on the surface of silicone rubber. After then, the surface properties of 3 doses of silver ion implanted silicone rubber (3×1015,1×1016 and 3×1016 ion/cm2) were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FTIR) and water contact angle test for surface morphology, elemental composition, chemical structure and hydrophilic/hydrophobic properties. The antibacterial properties of these materials were conducted by bacterial inhibition ring test and antibacterial adhesion assay using E. coli. The biocompatibility was evaluated by in vitro and in vivo experiments.       Results       SEM indicated that there was no obvious difference in the surface morphology of silicone rubber with different doses or without silver ion implantation. XPS showed that the silver ions were injected in the surface of silicone rubber but the content of silver ions had no change with the different doses of silver implantation. FTIR indicated that there was no obvious change in organic functional groups on the surface of 4 kinds of silicone rubber. Ion implantation significant reduced water contact angle with the increase of silver doses, indicating a trend of hydrophobic property of silicone rubber. The bacterial inhibition ring test showed that the diameter of inhibition ring is over 7 mm in the silver ion implanted silicone rubber, showing antibacterial activity. The antibacterial adhesion assay indicated that the silver ion implanted silicone rubber have decreased bacterial adhesion. The in vitro and in vivo experiments suggested the silver ion implanted silicone rubber had good biocompatibility.        Conclusion      The silver ion implantation can achieve a new material with good surface properties and increased antibacterial property.

参考文献/References:

[1]Liu P, Chen Q, Yuan B, et al. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7):  3865-3874.
[2]Kaali P, Stromberg E, Aune R E, et al. Antimicrobial properties of Ag+ loaded zeolite polyester polyurethane and silicone rubber and long-term properties after exposure to in-vitro ageing[J]. Polym Degrad Stab, 2010, 95(9):  1456-1465.
[3]Wang S L, Shi X H, Yang Z, et al. Osteopontin (OPN) is an important protein to mediate improvements in the biocompatibility of C ion-implanted silicone rubber[J]. PLoS One, 2014, 9(6):  e98320.
[4]Ishikawa J, Tsuji H, Sato H, et al. Ion implantation of negative ions for cell growth manipulation and nervous system repair[J]. Surf Coat Technol, 2007, 201(19/20):  8083-8090.
[5]Tsuji H, Sommani P, Kitamura T, et al. Nerve-cell attachment properties of polystyrene and silicone rubber modified by carbon negative-ion implantation[J]. Surf Coat Technol, 2007, 201(19/20):  8123-8126.
[6]杨芷, 沈丽如, 石小花, 等. 碳离子硅橡胶改性材料的表面性能检测及其细胞相容性评价[J]. 第三军医大学学报, 2013, 35(2):  123-126.
[7]Price C, Waters M G, Williams D W, et al. Surface modification of an experimental silicone rubber aimed at reducing initial candidal adhesion[J]. J Biomed Mater Res, 2002, 63(2):  122-128.
[8]刘志军, 肖勇, 马骐, 等. 抗菌材料的应用及发展展望[J]. 江西化工, 2002(4):  35-37.
[9]李建新, 王进, 沈丽如, 等. 银离子注入表面改性涤纶材料的抗菌性能研究[J]. 真空科学与技术学报, 2006, 26(5):  408-411.
[10]唐慧琴, 郑津辉, 刘桐, 等. 银离子注入热解碳的抗菌性研究[J]. 真空科学与技术学报. 2006, 26(2):  93-97.
[11]Aziz T, Waters M, Jagger R. Analysis of the properties of silicone rubber maxillofacial prosthetic materials[J]. J Dent, 2003, 31(1):  67-74.
[12]Keyf F. Change in a maxillo-facial prosthesis material effecting from environmental factors:  a clinical report[J]. J Biomater Appl, 2002, 16(4):   259-266.
[13]孙复钱, 曾国屏, 邓朝阳. 生物医用抗菌性硅橡胶材料的研究进展[J]. 高分子通报, 2012(5):  61-69.
[14]倪克钒. 抗菌型有机硅橡胶在医疗领域中的应用[J]. 中国医疗器械信息, 2009, 15(11):  20-22.
[15]Ren T B, Weigel T, Groth T, et al. Microwave plasma surface modification of silicone elastomer with Allylamine for improvement of biocompatibility[J]. J Biomed Mater Res A, 2008, 86(1):  209-219.
[16]Doro F G, Rodrigues-Filho U P, Tfouni E. A regenerable ruthenium tetraammine nitrosyl complex immobilized on a modified silica gel surface:   preparation and studies of nitric oxide release and nitrite-to-NO conversion[J]. J Colloid Interface Sci, 2007, 307(2):  405-417.
[17] Zhang Y M, Wang S L, Lei Z Y, et al. Mechanical and biological evaluations of beta-tricalcium phosphate/silicone rubber composite as a novel soft-tissue implant[J]. Aesthetic Plast Surg, 2009, 33(5):  760-769.
[18]Nosworthy N J, McKenzie D R, Bilek M M. A new surface for immobilizing and maintaining the function of enzymes in a freeze-dried state[J]. Biomacromolecules, 2009, 10(9):  2577-2583.
[19]Suzuki Y, Kusakabe M, Iwaki M, et al. Surface modification of silicone rubber by ion implantation[J]. Nucl Instrum Methods Phys Res B, 1988, 32(1/4):  120-124.

相似文献/References:

[1]杨芷,沈丽如,石小花,等.碳离子硅橡胶改性材料的表面性能检测及其细胞相容性评价[J].第三军医大学学报,2013,35(02):123.
 Yang Zhi,Shen Liru,Shi Xiaohua,et al.Surface properties and cell compatibility of carbon ion implanted silicone rubber[J].J Third Mil Med Univ,2013,35(19 ):123.
[2]李翔,陈瑶,周鑫,等.碳、银和氮离子注入硅橡胶对大鼠骨髓间充质干细胞生物学行为的影响[J].第三军医大学学报,2018,40(23):2162.
 LI Xiang,CHEN Yao,ZHOU Xin,et al.Effects of carbon, silver and nitrogen ions-implanted silicone rubber on biological behaviors of rat bone marrow mesenchymal stem cells[J].J Third Mil Med Univ,2018,40(19 ):2162.

更新日期/Last Update: 2015-09-28