[1]李畑波,鞠胜杰,蹇朝,等.腺苷酸激活蛋白激酶激活参与促进慢性缺氧时心肌细胞存活[J].第三军医大学学报,2015,37(08 ):797-803.
 Li Tianbo,Ju Shengjie,Jian Zhao,et al.AMPK activation participates in promoting myocardial cell survival in chronic hypoxia[J].J Third Mil Med Univ,2015,37(08 ):797-803.
点击复制

腺苷酸激活蛋白激酶激活参与促进慢性缺氧时心肌细胞存活(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第08期
页码:
797-803
栏目:
论著
出版日期:
2015-04-30

文章信息/Info

Title:
AMPK activation  participates in promoting myocardial cell survival in chronic hypoxia
作者:
李畑波鞠胜杰蹇朝李经纬唐富琴肖颖彬
第三军医大学新桥医院全军心血管外科研究所
Author(s):
Li Tianbo Ju Shengjie Jian Zhao Li Jingwei Tang Fuqin Xiao Yingbin

Institute of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

关键词:
腺苷酸激活蛋白激酶慢性缺氧心肌细胞
Keywords:
monophosphate-activated protein kinase chronic hypoxia myocardial cell
分类号:
R322.11;R345.57;R364.4
文献标志码:
A
摘要:

目的      检测腺苷酸激活蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)在慢性缺氧心肌组织中的激活水平,探讨AMPK激活对慢性缺氧心肌细胞存活的影响及其意义。      方法      选择本科2013年行手术矫治的先心病患儿24例,其中紫绀型先心病患儿12例,非紫绀型先心病患儿12例,取手术中切除的右室流出道心肌组织作为标本;选用4~6周龄清洁级雄性SD大鼠24只,分为常氧组和缺氧组(n=12)。将缺氧组置入低压舱 (模拟海拔5 000 m,气压405 mmHg),常氧组正常饲养。同时喂养28 d后,处死大鼠后迅速取出心脏并分离出右心室部分作为标本。采用Western blot分别检测p-AMPK在人体、大鼠缺氧心肌组织中的激活水平。选用H9c2心肌细胞株,并将其分为常氧组、低氧组、阻断组、激活组。将后3组细胞置入缺氧培养箱3 d(94% N2,5% CO2,1% O2),建立H9c2心肌细胞株慢性缺氧模型;常氧组置入细胞培养箱3 d,对照培养。分别向阻断组和激活组中加入AMPK特异性阻断剂Compound C和激活剂AICAR,采用Western blot检测p-AMPK的表达,流式细胞仪、TUNEL法检测心肌细胞凋亡, Hoechst33528染色观察细胞核形态、LDH测定心肌细胞死亡率。      结果      Western blot结果显示与常氧组相比,缺氧心肌组织中p-AMPK/AMPK比值明显增高。与低氧组比较,AMPK阻断组凋亡细胞比例升高,TUNEL-阳性细胞比例、不正常核比例、细胞死亡率均明显升高(P<0.05,P<0.01);AMPK激活组与低氧组比较, 凋亡细胞比例、TUNEL-阳性细胞比例、不正常核比例、细胞死亡率均有降低(P<0.05)。      结论      在慢性缺氧条件下,AMPK蛋白磷酸化水平增强,p-AMPK对心肌细胞慢性缺氧适应具有一定保护作用。

Abstract:

Objective      To detect adenosine monophosphate-activated protein kinase (AMPK) activation level in chronic hypoxic myocardial tissues, and explore the protective effect of phosphorylated AMPK (p-AMPK) to the currival of  chronic hypoxic myocardial cells.       Methods      Twenty-four children with congenital heart disease, including 12 cases of cyanotic type and type 12 cases of non-cyanotic, were selected from Xinqiao Hospital of Third Military Medical University in 2013, and the myocardial tissues of right ventricular outflow tract were taken out as samples. Twenty-four SD male rats were divided into normoxic control group and hypoxia group. The hypoxia group was placed in a low-pressure tank (simulated altitude of 5 000 m, 405 mmHg), while the normoxic control group received normal feeding. After feeding for 28 d, the rats were executed and the hearts were immediately taken out to isolate the right ventricular tissues. Western blotting was used to detect the activation level of AMPK in the hypoxic myocardial tissues of the children and rats. H9c2 myocardial cells were divided into normoxic control group, hypoxia group, blocking group and activation group. Except the normoxic control group, other three groups were placed in a hypoxia incubator (94% N2, 5% CO2, 1% O2) for 3 d to establish H9c2 chronic hypoxia cell models, while the normoxic control group was cultured in a cell culture box for 3 d in comparison. AMPK-specific blocker Compound C and activator AICAR were added to the blocking group and the activation group, respectively. Western blotting was employed to detect the expression of p-AMPK, and flow cytometry and TUNEL assay were adopted to detect myocardial cell apoptosis. The cell nucleus shape was observed by Hoechst staining, and myocardial cell death was measured with LDH test kit.       Results      Western blot results showed that compared with the normoxian group, the p-AMPK/AMPK ratio in the hypoxic myocardial tissue was increased significantly. Compared with the hypoxia group, the apoptosis cell percentage, TUNEL-positive cell percentage (P<0.05), abnormal nuclear scale (P<0.01), and cell mortality (P<0.01) of the blocking group were increased significantly. Compared with the hypoxia group, the apoptosis cell percentage, TUNEL-positive cell percentage (P<0.05), abnormal nuclear scale (P<0.05), and cell mortality (P<0.05) of the AMPK activation group were decreased.       Conclusion      Under the condition of chronic hypoxia, AMPK protein phosphorylation level is enhanced, and p-AMPK provides a certain protective effect to myocardial cells in chronic hypoxia adaptation.

参考文献/References:

[1]Kornosky J L, Salihu H M. Getting to the heart of the matter: epidemiology of cyanotic heart defects[J]. Pediatr Cardiol, 2008, 29(3): 484-497.
[2]Roger V L, Go A S, Lloyd-Jones D M, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association[J]. Circulation, 2012, 125(1): e2-e220.
[3]Chitra L, Boopathy R. Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung[J]. Respir Physiol Neurobiol 2014, 192: 74-84.
[4]Nouette-Gaulain K, Biais M, Savineau J P, et al. Chronic hypoxia-induced alterations in mitochondrial energy metabolism are not reversible in rat heart ventricles[J]. Can J Physiol Pharmacol, 2011, 89(1): 58-66.
[5]Essop M F. Cardiac metabolic adaptations in response to chronic hypoxia[J]. J Physiol, 2007, 584(Pt 3): 715-726.
[6]Arad M, Seidman C E, Seidman J G, et al . AMP-activated protein kinase in the heart: role during health and disease[J]. Circ Res, 2007, 100(4): 474-488.
[7]Jian Z, Li J B, Ma R Y, et al. Increase of macrophage migration inhibitory factor (MIF) expression in cardiomyocytes during chronic hypoxia[J]. Clin Chim Acta, 2009, 405(1/2): 132-138.
[8]蹇朝, 马瑞彦, 王咏, 等. 缺氧诱导因子-1α在紫绀型先心病患儿心肌中的表达[J]. 第三军医大学学报, 2009, 31(12): 1189-1192.
[9]He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway[J]. Biochem Biophys Res Commun, 2013, 441(4): 763-769.
[10]Borgdorff V, Rix U, Winter G E, et al. A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF[J]. Oncogene, 2014, 33(19): 2531-2539.
[11]Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
[12]Canto C, Gerhart-Hines Z, Feige J N, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nature, 2009, 458(7241): 1056-1060.
[13]Liang J, Shao S H, Xu Z X, et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis[J]. Nat Cell Biol, 2007, 9(2): 218-224.
[14]Kolar F, Ostadal B. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia[J]. Physiol Res, 2004, 53(Suppl 1): S3-S13.
[15]Baker J E, Holman P, Kalyanaraman B, et al. Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production[J]. Ann N Y Acad Sci, 1999, 874: 236-253.
[16]Eells J T, Henry M M, Gross G J, et al. Increased mitochondrial K(ATP) channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics?[J]. Circ Res, 2000, 87(10): 915-921.
[17]Hardie D G, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell?[J]. Eur J Biochem, 1997, 246(2): 259-273.
[18]Borger D R, Gavrilescu L C, Bucur M C, et al. AMP-activated protein kinase is essential for survival in chronic hypoxia[J]. Biochem Biophys Res Commun, 2008, 370(2): 230-234.
[19]Young L H. AMP-activated protein kinase conducts the ischemic stress response orchestra[J]. Circulation, 2008, 117(6): 832-840.
[20]Dyck J R, Lopaschuk G D. AMPK alterations in cardiac physiology and pathology: enemy or ally?[J]. J Physiol, 2006, 574(Pt 1): 95-112.
[21]Egan D F, Shackelford D B, Mihaylova M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331(6016): 456-461.
[22]Russell R C, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase[J]. Nat Cell Biol, 2013, 15(7): 741-750.

相似文献/References:

[1]张永,肖颖彬.紫绀型先天性心脏病患儿血清铁及总铁结合力的变化及意义[J].第三军医大学学报,2012,34(10):971.
 Zhang Yong,Xiao Yingbin.Changes of serum iron and total iron-binding capacity of infants with cyanotic congenital heart disease[J].J Third Mil Med Univ,2012,34(08 ):971.
[2]周胜凯,秦川,陈林,等.EPO对慢性缺氧心肌细胞线粒体生物合成的影响[J].第三军医大学学报,2013,35(12):1192.
 Zhou Shengkai,Qin Chuan,Chen Lin,et al.Effect of erythropoietin on mitochondrial biogenesis in cardiomyocytes during chronic hypoxia in vitro[J].J Third Mil Med Univ,2013,35(08 ):1192.
[3]王细文,仇玉福,陈意生,等.慢性缺氧大鼠右心房的超微病理变化及血浆ANF含量改变的实验研究[J].第三军医大学学报,2000,22(03):0.[doi:10.16016/j.1000-5404.2000.03.026 ]
 WANG Xi wen,QIU Yu fu,CHEN Yi sheng.[J].J Third Mil Med Univ,2000,22(08 ):0.[doi:10.16016/j.1000-5404.2000.03.026 ]
[4]高钰琪,彭鹰,孙秉庸,等.慢性缺氧对大鼠红细胞压积和脆性以及右心室重量的影响[J].第三军医大学学报,1990,12(06):0.[doi:10.16016/j.1000-5404.1990.06.028 ]
[5]谢增柱,王俊元,宋德颂,等.慢性缺氧对肺动脉压和血气的影响[J].第三军医大学学报,1980,02(02):0.[doi:10.16016/j.1000-5404.1980.02.008 ]
[6]第三军医大学三医大高原小组.急性缺氧对肺动脉压的影响[J].第三军医大学学报,1979,01(01):0.[doi:10.16016/j.1000-5404.1979.01.003 ]
[7]刘超,蹇朝,孟永胜,等.慢性缺氧诱导小鼠心肌细胞自噬及其机制[J].第三军医大学学报,2017,39(09):859.
 Liu Chao,Jian Zhao,Meng Yongsheng,et al.Chronic hypoxia induces myocardial autophagy in mice[J].J Third Mil Med Univ,2017,39(08 ):859.

更新日期/Last Update: 2015-04-20