[1]王东.基于DNA损伤修复的分子靶向治疗:肿瘤靶向治疗的新篇章[J].第三军医大学学报,2014,36(22):2243-2249.
 Wang Dong.Targeting DNA repair pathways: a new episode in targeted cancer therapeutics[J].J Third Mil Med Univ,2014,36(22):2243-2249.
点击复制

基于DNA损伤修复的分子靶向治疗:肿瘤靶向治疗的新篇章(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
36卷
期数:
2014年第22期
页码:
2243-2249
栏目:
专家述评
出版日期:
2014-11-30

文章信息/Info

Title:
Targeting DNA repair pathways: a new episode in targeted cancer therapeutics
作者:
王东
第三军医大学大坪医院野战外科研究所肿瘤中心
Author(s):
Wang Dong

Cancer Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China

关键词:
DNA损伤DNA修复肿瘤靶向治疗
Keywords:
DNA damage DNA repair targeted cancer therapy
分类号:
R730.5
文献标志码:
A
Abstract:

DNA, as the fundamental material carrying genetics information, is consistently challenged by endogenous and exogenous stimuli, including oxidative stress, ionizing irradiation, and chemotherapeutic agents, just to name a few. DNA repair mechanisms are then essential for cell survival under stress. Altered DNA repair networks is one of the most important features of cancer cells, which makes targeting DNA repair pathways an emerging strategy in cancer therapeutics. We reviewed the evolving variety of strategies and current potent clinical  drug candidates in DNA repair targeting therapeutics.

参考文献/References:

[1]Ame J C, Rolli V, Schreiber V, et al. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase[J]. J Biol Chem, 1999, 274(25): 17860-17868. 
[2]Johansson M. A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues[J]. Genomics, 1999, 57(3): 442-445. 
[3]Fong P C, Boss D S, Yap T A, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers[J]. N Engl J Med, 2009, 361(2): 123-134. 
[4]Gelmon K A, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study[J]. Lancet Oncol, 2011, 12(9): 852-861. 
[5]Kaye S B, Lubinski J, Matulonis U, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer[J]. J Clin Oncol, 2012, 30(4): 372-379. 
[6]BiPar Sciences presents interim phase 2 results for PARP inhibitor BSI-201 at San Antonio Breast Cancer Symposium[J]. Cancer Biol The, 2009, 8(1): 2-3. 
[7]Gerson S L. MGMT: its role in cancer aetiology and cancer therapeutics[J]. Nat Rev Cancer, 2004, 4(4): 296-307. 
[8]Quinn J A, Jiang S X, Carter J, et al. Phase II trial of Gliadel plus O6-benzylguanine in adults with recurrent glioblastoma multiforme[J]. Clin Cancer Res, 2009, 15(3): 1064-1068. 
[9]Quinn J A, Jiang S X, Reardon D A, et al. Phase II trial of temozolomide plus O6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma[J]. J Clin Oncol, 2009, 27(8): 1262-1267.
[10]Ranson M, Hersey P, Thompson D, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma[J]. J Clin Oncol, 2007, 25(18): 2540-2545. 
[11]Khan O A, Ranson M, Michael M, et al. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer[J]. Br J Cancer, 2008, 98(10): 1614-1618. 
[12]Kaina B, Margison G P, Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy[J]. Cell Mol Life Sci, 2010, 67(21): 3663-3681. 
[13]Li M, Wilson D M 3rd. Human apurinic/apyrimidinic endonuclease 1[J]. Antioxid Redox Signal, 2014, 20(4): 678-707. 
[14]Tell G, Quadrifoglio F, Tiribelli C, et al. The many functions of APE1/Ref-1: not only a DNA repair enzyme[J]. Antioxid Redox Signal, 2009, 11(3): 601-620. 
[15]Ren T, Qing Y, Dai N, et al. Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells[J]. Cancer Sci, 2014, 105(2): 186-194. 
[16]Wang D, Xiang D B, Yang X Q, et al. APE1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells[J]. Lung Cancer, 2009, 66(3): 298-304. 
[17]Wang D, Luo M, Kelley M R. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition[J]. Mol Cancer Ther, 2004, 3(6): 679-686. 
[18]Cun Y, Dai N, Xiong C, et al. Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model[J]. PLoS One, 2013, 8(2): e55313. 
[19]Wang D, Zhong Z Y, Li M X, et al. Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo[J]. Cancer Sci, 2007, 98(12): 1993-2001. 
[20]Li M, Vascotto C, Xu S, et al. Human AP endonuclease/redox factor APE1/ref-1 modulates mitochondrial function after oxidative stress by regulating the transcriptional activity of NRF1[J]. Free Radic Biol Med, 2012, 53(2): 237-248. 
[21]Singh-Gupta V, Zhang H, Banerjee S, et al. Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells[J]. Int J Cancer, 2009, 124(7): 1675-1684. 
[22]Hillman G G, Singh-Gupta V. Soy isoflavones sensitize cancer cells to radiotherapy[J]. Free Radic Biol Med, 2011, 51(2): 289-298. 
[23]Pendleton J M, Tan W W, Anai S, et al.  Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy[J]. BMC Cancer, 2008, 8: 132. 
[24]Lazarevic B, Boezelijn G, Diep L M, et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial[J]. Nutr Cancer, 2011, 63(6): 889-898. 
[25]Yang S, Irani K, Heffron S E, et al. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor[J]. Mol Cancer Ther, 2005, 4(12): 1923-1935. 
[26]Raffoul J J, Heydari A R, Hillman G G. DNA Repair and Cancer Therapy: Targeting APE1/Ref-1 Using Dietary Agents[J]. J Oncol, 2012, 2012: 370481. 
[27]Boocock D J, Faust G E, Patel K R, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent[J]. Cancer Epidemiol Biomarkers Prev, 2007, 16(6): 1246-1252. 
[28]Hiramoto M, Shimizu N, Sugimoto K, et al. Nuclear targeted suppression of NF-kappa B activity by the novel quinone derivative E3330[J]. J Immunol, 1998, 160(2): 810-819. 
[29]Shimizu N, Sugimoto K, Tang J, et al. High-performance affinity beads for identifying drug receptors[J]. Nat Biotechnol, 2000, 18(8): 877-881.
[30]Qian C, Li M, Sui J, et al. Identification of a novel potential antitumor activity of gossypol as an APE1/Ref-1 inhibitor[J]. Drug Des Devel Ther, 2014, 8: 485-496. 
[31]Zhang Y, Du Y, Le W, et al. Redox control of the survival of healthy and diseased cells[J]. Antioxid Redox Signal, 2011, 15(11): 2867-2908.
[32]Luo M, He H, elley M R, et al.  Redox regulation of DNA repair: implications for human health and cancer therapeutic development[J]. Antioxid Redox Signal, 2010, 12(11): 1247-1269. 
[33]Patil A G, Sang P B, Govindan A, et al. Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance[J]. J Biol Chem, 2013, 288(16): 11252-11262. 
[34]Ichikawa J, Tsuchimoto D, Oka S, et al. Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death[J]. DNA Repair, 2008, 7(3): 418-430. 
[35]Gad H, Koolmeister T, Jemth A S, et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool[J]. Nature, 2014, 508(7495): 215-221. 
[36]Russo M T, Blasi M F, Chiera F, et al. The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells[J]. Mol Cell Biol, 2004, 24(1): 465-474. 
[37]Huber K V, Salah E, Radic B, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy[J]. Nature, 2014, 508(7495): 222-227. 
[38]Loveday C, Turnbull C, Ramsay E, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer[J]. Nat Genet, 2011, 43(9): 879-882. 
[39]Williamson C T, Kubota E, Hamill J D, et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53[J]. EMBO Mol Med, 2012, 4(6): 515-527. 
[40]Vilar E, Bartnik C M, Stenzel S L, et al. MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers[J]. Cancer Res, 2011, 71(7): 2632-2642. 
[41]Kurosawa A, Saito S, So S, et al. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair[J]. PLoS One, 2013, 8(8): e72253. 
[42]Lord C J, McDonald S, Swift S, et al. A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity[J]. DNA Repair (Amst), 2008, 7(12): 2010-2019. 
[43]Sultana R, Abdel-Fatah T, Abbotts R, et al. Targeting XRCC1 deficiency in breast cancer for personalized therapy[J]. Cancer Res, 2013, 73(5): 1621-1634. 
[44]Mendes-Pereira A M, Martin S A, Brough R, et al.  Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors[J]. EMBO Mol Med, 2009, 1(6/7): 315-322. 
[45]Mereniuk T R, El-Gendy M A, Mendes-Pereira A M, et al.  Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase[J]. Mol Cancer Ther, 2013, 12(10): 2135-2144. 
[46]Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.

相似文献/References:

[1]杨录军,敖琳,NuesseMichael,等.昆明山海棠碱诱导Jurkat淋巴瘤细胞株的PARP酶剪切和caspase-3激活[J].第三军医大学学报,2003,25(17):0.[doi:10.16016/j.1000-5404.2003.17.005 ]
 YANG Lu jun,AO Lin,Nuesse Michael,et al.[J].J Third Mil Med Univ,2003,25(22):0.[doi:10.16016/j.1000-5404.2003.17.005 ]

更新日期/Last Update: 2014-11-18