Du Lizhong,Zhang Liyan.Relationship of nutrition in the early years of life with developmental origin of lung disease[J].J Third Mil Med Univ,2014,36(22):2249-2253.

重视生命早期营养与远期肺部疾病的关系(/HTML )




Relationship of nutrition in the early years of life with developmental origin of lung disease
Du Lizhong Zhang Liyan

Department of Neonatology, Children’s Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310003, China

epigenetics nutrition extra-uterine growth retardation pulmonary hypertension pulmonary vascular endothelial cells

Perinatal life is considered a critical time window for determination of long-term metabolic states and organ functions. The perinatal period represents a vulnerable window for the compromised infants, including preterm infants, those who experienced extra-uterine growth restriction (EUGR), or those otherwise being hospitalized. Molecular and cellular events initiated during this period have the potential to impart lifelong phenotypic changes to infants. This is the basis of the Developmental Origins of Disease Hypothesis. A proposed molecular mechanism by which early events alter later health is epigenetic modifications to chromatin. Epigenetic modifications alter gene expression and subsequently phenotype. One well-studied epigenetic modifier is nutrition, which is important prenatally to the growth and development of the fetus as well as postnatally for preterm infants in the hospital. However, the effects of nutritional disadvantages during perinatal period on pulmonary vascular consequences in later life are not fully understood. Epigenetics plays an important role in the fetal origins of adult diseases. Moreover, endothelial dysfunction is regarded as a precursor of pulmonary arterial hypertension (PAH) and is also related to infant growth. These studies would provide new insights in the prevention and treatment of PAH in childhood or adulthood, and provide a new theoretical basis for controlling the development origin of health and disease, which could have an important clinical significance.


[1]Nuyt A M. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models[J]. Clin Sci (Lond), 2008, 114(1): 1-17.
[2]Tare M, Parkington H C, Bubb K J, et al. Uteroplacental insufficiency and lactational environment separately influence arterial stiffness and vascular function in adult male rats[J]. Hypertension, 2012, 60(2): 378-386.
[3]Patel M S, Srinivasan M. Metabolic programming in the immediate postnatal life[J]. Ann Nutr Metab, 2011, 58(Suppl 2): 18-28.
[4]Wiedmeier J E, Joss-Moore L A, Lane R H, et al. Early postnatal nutrition and programming of the preterm neonate[J]. Nutr Rev, 2011, 69(2): 76-82.
[5]Sun C, Burgner D P, Ponsonby A L, et al. Effects of early-life environment and epigenetics on cardiovascular disease risk in children: highlighting the role of twin studies[J]. Pediatr Res, 2013,73(4 Pt 2): 523-530.
[6]Hales C N, Barker D J. The thrifty phenotype hypothesis[J]. Br Med Bull, 2001, 60: 5-20.
[7]Barker D J, Eriksson J G, Forsen T, et al. Fetal origins of adult disease: strength of effects and biological basis[J]. Int J Epidemiol, 2002, 31(6): 1235-1239.
[8]Bateson P, Barker D, Clutton-Brock T, et al. Developmental plasticity and human health[J]. Nature, 2004, 430(6998): 419-421.
[9]Gluckman P D, Hanson M A, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease[J]. N Engl J Med, 2008, 359(1): 61-73.
[10]Wolffe A P, Matzke M A. Epigenetics: regulation through repression[J]. Science, 1999, 286(5439): 481-486.
[11]Jjingo D, Conley A B, Yi S V, et al. On the presence and role of human gene-body DNA methylation[J]. Oncotarget, 2012, 3(4): 462-474.
[12]Booth M J, Branco M R, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution[J]. Science, 2012, 336(6083): 934-937.
[13]Jenuwein T, Allis C D. Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080.
[14]Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4): 693-705.
[15]Brosnan C A, Voinnet O. The long and the short of noncoding RNAs[J]. Curr Opin Cell Biol, 2009, 21(3): 416-425.
[16]Wang K C, Chang H Y. Molecular mechanisms of long noncoding RNAs[J]. Mol Cell, 2011, 43(6): 904-914.
[17]Gong C, Maquat L E. IncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements[J]. Nature, 2011, 470(7333): 284-288.
[18]Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat[J]. Nature, 2012, 491(7424): 454-457.
[19]Burdge G C, Lillycrop K A. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease[J]. Annu Rev Nutr, 2010, 30: 315-339.
[20]Lucas A, Morley R, Cole T J, et al. Early diet in preterm babies and developmental status at 18 months[J]. Lancet, 1990, 335(8704): 1477-1481.
[21]Isaacs E B, Morley R, Lucas A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation[J]. J Pediatr, 2009, 155(2): 229-234.
[22]Ehrenkranz R A, Dusick A M, Vohr B R, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants[J]. Pediatrics, 2006, 117(4): 1253-1261.
[23]Bazaes R A, Alegria A, Pittaluga E, et al. Determinants of insulin sensitivity and secretion in very-low-birth-weight children[J]. J Clin Endocrinol Metab, 2004, 89(3): 1267-1272.
[24]张晓铭, 张美仙, 侯冬青, 等. 出生体重对儿童期和成年期高血压影响的队列研究[J]. 中国循证儿科杂志, 2011, 6(3): 199-204.
[25]Singhal A, Cole T J, Fewtrell M, et al. Is slower early growth beneficial for long-term cardiovascular health?[J]. Circulation, 2004, 109(9): 1108-1113.
[26]Joss-Moore L A, Lane R H. Perinatal Nutrition, Epigenetics, and Disease[J]. NeoReviews, 2011, 12(9): e498-e505.
[27]Joss-Moore L A, Albertine K H, Lane R H. Epigenetics and the developmental origins of lung disease[J]. Mol Genet Metab, 2011, 104(1/2): 61-66.
[28]de-Jong F, Monuteaux M C, van-Elburg R M, et al. Systematic review and meta-analysis of preterm birth and later systolic blood pressure[J]. Hypertension, 2012, 59(2): 226-234.
[29]Brostrom E B, Akre O, Katz-Salamon M, et al. Obstructive pulmonary disease in old age among individuals born preterm[J]. Eur J Epidemiol, 2013, 28(1): 79-85.
[30]Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology[J]. Circ Res, 2006, 98(3): 322-334.
[31]Wu X, Du L, Xu X, et al. Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice[J]. J Pharmacol Sci, 2010, 113(1): 32-40.
[32]Xu Y P, Zhu J J, Cheng F, et al. Ghrelin ameliorates hypoxia-induced pulmonary hypertension via phospho-GSK3 beta/beta-catenin signaling in neonatal rats[J]. J Mol Endocrinol, 2011, 47(1): 33-43.
[33]Xu X F, Ma X L, Shen Z, et al. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat[J]. J Hypertens, 2010, 28(11): 2227-2235.
[34]Danhaive O, Margossian R, Geva T, et al. Pulmonary hypertension and right ventricular dysfunction in growth-restricted, extremely low birth weight neonates[J]. J Perinatol, 2005, 25(7): 495-499.
[35]Sartori C, Allemann Y, Trueb L, et al. Augmented vasoreactivity in adult life associated with perinatal vascular insult[J]. Lancet, 1999, 353(9171): 2205-2207.
[36]Park J H, Stoffers D A, Nicholls R D, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J]. J Clin Invest, 2008, 118(6): 2316-2324.
[37]Heijmans B T, Tobi E W, Stein A D, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans[J]. Proc Natl Acad Sci U S A, 2008, 105(44): 17046-17049.
[38]Fu Q, Yu X, Callaway C W, et al. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene[J]. FASEB J, 2009, 23(8): 2438-2449.
[39]Baserga M, Kaur R, Hale M A, et al. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehydrogenase type 2 in a sex-specific manner[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(1): R334-R342.
[40]Bourque S L, Gragasin F S, Quon A L, et al. Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring[J]. Hypertension, 2013, 62(4): 753-758.
[41]Xu X F, Lv Y, Gu W Z, et al. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR[J]. Respir Res, 2013, 14: 20.
[42]Park W S, Firth A L, Han J, et al. Patho-, physiological roles of voltage-dependent K+ channels in pulmonary arterial smooth muscle cells[J]. J Smooth Muscle Res, 2010, 46(2): 89-105.
[43]Kim H K, Lee Y S, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. J Cell Biol, 2006, 174(5): 677-687.
[44]Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2): 228-233.
[45]Nohata N, Hanazawa T, Enokida H, et al. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers[J]. Oncotarget, 2012, 3(1): 9-21.
[46]Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
[47]Zhang L, Tang L, Wei J, et al. Extrauterine growth restriction on pulmonary vascular endothelial dysfunction in adult male rats: the role of epigenetic mechanisms[J]. J Hypertens, 2014, [Epub ahead of print].
[48]Saco T V, Parthasarathy P T, Cho Y, et al. Role of epigenetics in pulmonary hypertension[J]. Am J Physiol Cell Physiol, 2014, 306(12): C1101-C1105.
[49]Cordes K R, Sheehy N T, White M P, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature, 2009, 460(7256): 705-710.


[1]李明秀,姜学英,吴祖琴,等.住院病人基本营养状况调查与分析[J].第三军医大学学报,2004,26(20):0.[doi:10.16016/j.1000-5404.2004.20.035 ]
[2]李明秀,王建,姜学英,等.1例短肠综合征合并输尿管结石围手术期的营养治疗[J].第三军医大学学报,2002,24(04):0.[doi:10.16016/j.1000-5404.2002.04.031 ]
[3]李明秀,王建,方丽,等.十二指肠胰肾联合移植1例营养治疗[J].第三军医大学学报,1999,21(09):0.[doi:10.16016/j.1000-5404.1999.09.005 ]
[4]李明秀,吴祖琴,陈素莲,等.重庆地区孕妇的膳食调查[J].第三军医大学学报,1996,18(02):0.[doi:10.16016/j.1000-5404.1996.02.035 ]
[5]李明秀,姜学英,王建,等.老年重症患者管饲营养支持效果观察[J].第三军医大学学报,2003,25(10):0.[doi:10.16016/j.1000-5404.2003.10.009 ]

更新日期/Last Update: 2014-11-18