[1]刘瑶瑶,代飞,孙东,等.不同量骨水泥强化新型空心椎弓根螺钉的体外生物力学研究[J].第三军医大学学报,2012,34(16):1626-1629.
 Liu Yaoyao,Dai Fei,Sun Dong,et al.Influence of the volume of bone cement on the reinforcement of a novel canulated pedicle screw: a biomechanical study in vitro[J].J Third Mil Med Univ,2012,34(16):1626-1629.
点击复制

不同量骨水泥强化新型空心椎弓根螺钉的体外生物力学研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
34卷
期数:
2012年第16期
页码:
1626-1629
栏目:
论著
出版日期:
2012-08-30

文章信息/Info

Title:
Influence of the volume of bone cement on the reinforcement of a novel canulated pedicle screw: a biomechanical study in vitro
作者:
刘瑶瑶代飞孙东罗飞张泽华许建中
第三军医大学西南医院骨科,全军矫形外科中心
Author(s):
Liu Yaoyao Dai Fei Sun Dong Luo Fei Zhang Zehua Xu Jianzhong
Department of Orthopedics, Orthopedic Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
关键词:
椎弓根螺钉骨质疏松PMMA强化生物力学
Keywords:
pedicle screw osteoporosis PMMA biomechanics
分类号:
R318.01;R318.08;R687.3
文献标志码:
A
摘要:
目的      探讨自行设计的可注射骨水泥椎弓根螺钉(bone cement injectable canulated pedicle screw,CICPS)在注入不同量骨水泥时的骨水泥弥散情况及生物力学稳定性。      方法      按临床置钉标准程序将CICPS、韩国DTPSTM椎弓根螺钉和普通椎弓根螺钉植入骨质疏松松质骨模型(骨密度0.16 g/cm3n=7)中,分别加压注射不同体积骨水泥(1、2、3、5 ml)增强2种空心螺钉,普通螺钉作为对照组。X线、CT观察骨水泥弥散形态;最大轴向拔出力实验分析骨水泥使用量与最大轴向拔出力之间的关系;比较3种螺钉生物力学稳定性的特点。      结果      X线观察螺钉均未发生骨水泥向后泄漏。X线、CT三维重建显示骨水泥从CICPS 3个侧孔中流出,分布均匀;而骨水泥主要从韩国DTPSTM椎弓根螺钉的近端侧孔流出,远端侧孔较少。CICPS各组(1、2、3、5 ml)最大轴向拔出力分别为(140.3±15.9)、(197.1±9.8)、(215.4±10.7)、(237.0±23.6)N;DTPSTM各组(1、2、3、5 ml)最大轴向拔出力分别为(114.3±17.7)、(180.5±13.6)、(207.2±30.0)、(291.3±25.1)N。经骨水泥增强的空心椎弓根螺钉最大轴向拔出力显著高于普通螺钉[(28.5±4.0) N,P<0.05]。空心螺钉最大轴向拔出力随骨水泥使用量的增加而增大。骨水泥使用量为1、2、3 ml时,CICPS的生物力学稳定性显著高于DTPSTMP<0.05)。骨水泥使用量为5 ml时,DTPSTM的生物力学稳定性高于CICPS(P<0.05)。      结论      在骨质疏松椎体模型中,骨水泥增强可显著增加CICPS的锚定作用;骨水泥使用量在1~3 ml的情况下,其稳定性优于同类产品。
Abstract:
Objective      To evaluate the bone cement distribution and biomechanical stability of self-designed bone cement injectable canulated pedicle screw (CICPS).       Methods      CICPS, DTPSTM and solid pedicle screws were implanted into osteoporotic bone models (density: 0.16 g/cm3, n=7) according to the clinical standard procedure. Four different volumes of bone cement (1, 2, 3 and 5 ml) were used to reinforce CICPS and DTPSTM, respectively, and the solid pedicle screws were used as control. X-ray and CT were applied to observe the bone cement distribution in different groups. Maximum axial pullout strength test was used to analyze the relationship between the bone cement volume and maximum axial pullout strength, and the biomechanical stabilities of CICPS, DTPSTM and solid pedicle screws were compared.       Results      X-ray showed that there was no bone cement rear leakage in all screws. Three-dimensional reconstruction of X-ray and CT showed bone cement well and widely distributed through the three side holes of the CICPS in bone models. Bone cement flowed out mainly through the proximal side hole of the DTPSTM but rarely through the distal side hole. The maximum axial pullout strength of each group was as follows: solid pedicle screws: (28.5±4.0) N; CICPS: 1 ml (140.3±15.9) N, 2 ml (197.1±9.8) N, 3 ml (215.4±10.7) N and 5 ml (237.0±23.6) N; and DTPSTM : 1 ml (114.3±17.7) N, 2 ml (180.5±13.6) N, 3 ml (207.2±30.0) N and 5 ml (291.3±25.1) N. The maximum axial pullout strength of the CICPS and DTPSTM after reinforced by bone cement was significantly greater than that of the control group, and the strength increased along with the increase of bone cement volume. When the volume of bone cement was 1, 2 and 3 ml, the biomechanical stability of the CICPS was higher than that of the DTPSTM (P<0.05). When the volume of bone cement was 5 ml, the biomechanical stability of the DTPSTM was higher than that of the CICPS (P<0.05).       Conclusion      It is effective to enhance the biomechanical stability of CICPS by bone cement reinforcement in osteoporotic bone model. When the volume of bone cement for clinical treatment was 1-3 ml, the CICPS is proved safer and more stable than other products.

参考文献/References:

刘瑶瑶, 代飞, 孙东, 等. 不同量骨水泥强化新型空心椎弓根螺钉的体外生物力学研究[J].第三军医大学学报,2012,34(16):1626-1629.

相似文献/References:

[1]王远政,田晓滨,刘洋,等.Mimics及颈椎模型用于下颈椎椎弓根个体化置钉的应用研究[J].第三军医大学学报,2012,34(15):1543.
 Wang Yuanzheng,Tian Xiaobin,Liu Yang,et al.Individualization of lower cervical pedicle screw fixation with rapid prototyping and MIMICS software[J].J Third Mil Med Univ,2012,34(16):1543.
[2]王远政,刘洋,邓忠良.下颈椎前路椎弓根螺钉置入的实验研究[J].第三军医大学学报,2012,34(18):1839.
 Wang Yuanzheng,Liu Yang,Deng Zhongliang.Insertion of lower cervical spine anterior pedicle screw in 18 cadavers[J].J Third Mil Med Univ,2012,34(16):1839.
[3]殷翔,许建中,周强,等.椎弓根螺钉固定三维矫治特发性脊柱侧凸的疗效[J].第三军医大学学报,2007,29(14):1440.
 YIN Xiang,XU Jian-zhong,ZHOU Qiang,et al.Efficacy of pedicle screw technique for orthomorphia of idiopathic scoliosis[J].J Third Mil Med Univ,2007,29(16):1440.
[4]陈秀明,艾国平,粟永萍,等.新型异黄酮类化合物对去势大鼠股骨生物力学性能影响的实验研究[J].第三军医大学学报,2007,29(11):1039.
 CHEN Xiu-ming,AI Guo-ping,SU Yong-ping,et al.Effect of a novel isoflavone compound on femoral biomechanics of ovarectomied rats[J].J Third Mil Med Univ,2007,29(16):1039.
[5]向菲,李树法,王培珊,等.贵阳市1 171例女性桡骨超声速率的研究[J].第三军医大学学报,2006,28(15):1627.
[6]尹雅江.溃疡性结肠炎并多种肠外表现1例[J].第三军医大学学报,2013,35(06):546.
[7]戈朝晖,丁惠强,梁思敏,等.单侧椎弓根外入路椎体后凸成形术治疗重度骨质疏松性椎体骨折[J].第三军医大学学报,2011,33(17):1868.
 Ge Zhaohui,Ding Huiqiang,Liang Simin,et al.Percutaneous kyphoplasty through unilateral extrapedicular approach in treating severe osteoporotic vertebral compression fractures[J].J Third Mil Med Univ,2011,33(16):1868.
[8]郭伟韬,祝葆华,曾荣,等.寰枢椎椎弓根螺钉固定治疗创伤性寰枢椎不稳23例临床分析[J].第三军医大学学报,2010,32(14):1557.
 Guo Weitao,Zhu Baohua,Zeng Rong,et al.Treatment of atlantoaxial instability with C1-C2 pedicle screw fixation and fusion with bone autografting: report of 23 cases[J].J Third Mil Med Univ,2010,32(16):1557.
[9]史平,朱薇,李晓鸣.锁阳多糖对去卵巢大鼠骨质疏松的改善作用[J].第三军医大学学报,2015,37(23):2360.
 Shi Ping,Zhu Wei,Li Xiaoming.Cynomorium Songaricum polysaccharide improves osteoporosis in ovariectomized rats[J].J Third Mil Med Univ,2015,37(16):2360.
[10]郑轶,吴增晖,章凯,等.经口前路寰椎椎弓根螺钉的应用解剖学研究[J].第三军医大学学报,2010,32(04):399.

更新日期/Last Update: 2012-07-29