0
文章快速检索   高级检索
WIN55212-2通过调控AKT/mTOR/PFKFB3信号通路减轻脓毒症小鼠急性肾损伤
董旭鹏1, 段倩雯1, 马源1, 刘澈1, 龚禹1, 马玉清2     
1. 730000 兰州,兰州大学:第一临床医学院;
2. 730000 兰州,兰州大学:第一医院麻醉科
[摘要] 目的 探讨大麻素受体激动剂WIN55212-2(WIN)对脓毒症小鼠急性肾损伤(acute kidney injury,AKI)的影响及其作用机制。方法 24只雄性健康小鼠分为4组(n=6): 对照组(Control组)、脓毒症组(LPS组)、脓毒症+WIN55212-2组(LPS+WIN组)和脓毒症+WIN55212-2+mTOR激活剂MHY1485组(LPS+WIN+MHY组)。采用腹腔注射脂多糖(lipopolysaccharide,LPS)的方法构建脓毒症模型,造模24 h后取材,ELISA测定肾脏组织IL-1β、IL-18和乳酸脱氢酶A(lactate dehydrogenase A,LDHA)的含量以及血清Scr、肾损伤分子-1(kidney injury molecule-1,KIM-1)和乳酸的含量;HE染色观察肾脏组织病理改变并进行Paller评分,Western blot检测肾脏组织p-AKT、p-mTOR及6-磷酸果糖激酶-2/果糖-2, 6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3,PFKFB3)的表达。结果 与Control组相比,LPS组HE染色显示肾脏组织受损,Paller评分升高(P < 0.05),血清乳酸、Scr、KIM-1含量升高(P < 0.05),肾脏组织LDHA、IL-1β、IL-18含量上调(P < 0.05),肾脏组织p-AKT、p-mTOR、PFKFB3表达增加(P < 0.05)。与LPS组相比,LPS+WIN组肾脏组织病理损伤减轻,Paller评分降低(P < 0.05),乳酸、Scr、KIM-1的含量降低(P < 0.05),LDHA、IL-1β、IL-18含量下调(P < 0.05),p-AKT、p-mTOR、PFKFB3表达减少(P < 0.05)。与LPS+WIN组相比,LPS+WIN+MHY组Paller评分升高(P < 0.05),乳酸、Scr、KIM-1的含量升高(P < 0.05),LDHA、IL-1β、IL-18含量上调(P < 0.05),p-AKT、p-mTOR、PFKFB3表达增加(P < 0.05)。结论 WIN可以减轻脓毒症AKI,其机制可能是通过抑制AKT/mTOR/PFKFB3信号通路,降低肾脏组织糖酵解水平,减轻炎症反应。
[关键词] 脓毒症    急性肾损伤    有氧糖酵解    AKT/mTOR    
WIN55212-2 alleviates acute kidney injury in septic mice by regulating the AKT/mTOR/PFKFB3 signaling pathway
DONG Xupeng1, DUAN Qianwen1, MA Yuan1, LIU Che1, GONG Yu1, MA Yuqing2     
1. The First Clinical Medical College, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, China;
2. Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, China
[Abstract] Objective To investigate the effects of cannabinoid receptor agonist, WIN55212-2 (WIN), on acute kidney injury (AKI) in mice with sepsis and its underlying mechanism. Methods Twenty-four healthy male mice were divided into (n=6): Control group, sepsis group (LPS group), sepsis+WIN55212-2 group (LPS+WIN group) and sepsis+WIN55212-2+mTOR activator MHY1485 group (LPS+WIN+MHY group). The sepsis model was constructed by intraperitoneal injection of LPS. After the tissue and blood samples were harvested in 24 h after modeling, ELISA was used to determine the contents of IL-1β, IL-18 and lactate dehydrogenase A (LDHA) in the renal tissues, as well as Scr, kidney injury molecule-1 (KIM-1) and lactic acid (LA) in the serum. HE staining was employed to observe the pathological changes of kidney tissue and Paller score was calculated. The expression of p-AKT, p-mTOR and 6-phosphofructokinase-2/fructose-2, 6-biphosphatase 3 (PFKFB3) in the renal tissues was detected by Western blotting. Results Compared with the Control group, the LPS group had obvious kidney tissue damage, increased Paller score (P < 0.05), increased serum contents of lactic acid, Scr and KIM-1 (P < 0.05), up-regulated contents of LDHA, IL-1β and IL-18 in the renal tissues (P < 0.05), and elevated expression levels of p-AKT, p-mTOR and PFKFB3 in the renal tissues (P < 0.05). Milder pathological injury in kidney tissue, decreased Paller score (P < 0.05), reduced contents of lactic acid, Scr and KIM-1 (P < 0.05), decreased contents of LDHA, IL-1β and IL-18 (P < 0.05), and lower expression of p-AKT, p-mTOR and PFKFB3 were observed in the LPS+WIN group than the LPS group (P < 0.05). The LPS+WIN+MHY group had notably higher Paller score (P < 0.05), raised contents of lactic acid, Scr and KIM-1 (P < 0.05), increased contents of LDHA, IL-1β and IL-18 (P < 0.05), and up-regulated expression of p-AKT, p-mTOR and PFKFB3 (P < 0.05) when compared with the LPS+WIN group. Conclusion WIN can alleviate AKI in sepsis, and it may reduce the level of glycolysis in renal tissue, and alleviate inflammation through inhibiting AKT/mTOR/PFKFB3 signaling pathway.
[Key words] sepsis    acute kidney injury    aerobic glycolysis    AKT/mTOR    

脓毒症是宿主对感染的反应异常导致危及生命的器官功能障碍[1]。急性肾损伤(acute kidney injury, AKI)是脓毒症的一种常见的并发症,也是进展为慢性肾脏疾病的一个危险因素[2]。脓毒症AKI的全球发病率约为每年1 100万例[3]。高达60%的脓毒症患者在ICU中发现脓毒症AKI[4],而且临床上被诊断为脓毒症AKI的患者往往存在更高的死亡风险[5]

炎症反应是宿主抵抗感染的主要防御机制,但炎症失衡可导致组织和器官的进一步损伤,这也是脓毒症主要的发病机制[6]。最新研究表明,有氧糖酵解在宿主防御感染的免疫反应中发挥核心作用,是炎症性疾病的一个新靶点[7]。脓毒症时,小鼠肾脏组织代谢可转变为有氧糖酵解,使糖酵解水平和糖酵解途径多种关键酶水平增加,抑制有氧糖酵解可以减轻脓毒症AKI,提高脓毒症小鼠存活率[8]。但其具体机制目前报道较少,需要进一步研究来明确。

越来越多的证据表明PI3K-AKT-mTOR信号通路激活参与调控细胞有氧糖酵解[9-10],HU等[11]发现LPS可通过激活肺成纤维细胞PI3K-AKT-mTOR信号通路,上调6-磷酸果糖激酶-2/果糖-2, 6-二磷酸酶3 (6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3,PFKFB3),加速有氧糖酵解,促进肺成纤维细胞的胶原合成。

WIN55212-2 (WIN)是一种具有抗炎特性的大麻素受体激动剂,研究表明WIN可减轻LPS诱导的人内皮细胞的炎症激活[12]。尚有研究发现WIN可通过miR-29b-3p/FOXO3/PFKFB3信号轴抑制糖酵解,减轻LPS诱导的急性肺损伤(acute lung injury,ALI)[13]。而WIN能否通过抑制有氧糖酵解减轻脓毒症AKI及其与AKT/mTOR/PFKFB3信号通路之间的关系,尚有待探明。因此,本研究采用腹腔注射LPS制备小鼠脓毒症AKI模型,探讨WIN是否可以通过调控AKT/mTOR/PFKFB3信号通路活性,抑制有氧糖酵解,减轻脓毒症小鼠AKI。

1 材料与方法 1.1 实验动物与主要试剂

SPF级别6~8周雄性健康C57BL/6小鼠,体质量20~25 g,购自兰州大学实验动物中心[动物许可证号:SCXK(甘)2018-0002]。小鼠正常进食,人工光照和黑暗时间12 h交替,适应性饲养1周后开始实验。LPS购自美国Sigma公司;mTOR激活剂MHY1485购自美国MCE公司;WIN55212-2购自Cayman公司;抗p-AKT、抗p-mTOR抗体均购于博奥森公司;抗PFKFB3抗体购于Abcam公司;IL-18、IL-1β、Scr、KIM-1、LDHA、乳酸酶联免疫吸附(ELISA)测定试剂盒均购自上海酶联生物科技有限公司。实验过程中动物处理措施符合伦理学要求,已获兰州大学第一医院伦理委员会批准(LDYYLL2023-320)。

1.2 实验分组与处理

24只小鼠按照随机数字表法分为4组(n=6):①对照组(Control组);②脓毒症组(LPS组),腹腔注射LPS(10 mg/kg)[14];③脓毒症+WIN55212-2组(LPS+ WIN组),LPS处理前30 min腹腔注射WIN 1 mg/kg[13];④脓毒症+WIN55212-2+MHY组(LPS+WIN+MHY组),LPS处理前1 d腹腔注射MHY1485 10 mg/kg[15],LPS处理前30 min腹腔注射MHY1485 10 mg/kg和WIN 1 mg/kg。Control组和LPS组于上述相同时间腹腔注射等量二甲基亚砜。

1.3 标本采集

造模后24 h,戊巴比妥钠50 mg/kg腹腔注射麻醉小鼠后,将其仰卧于固定板上;剪去心前区毛发并消毒,以食指指腹定位小鼠心脏搏动区; 手持1 mL注射器穿刺心搏最强处,收集足量血液标本。静置30 min后以3 000 r/min,离心15 min,取上清液于-80 ℃冰箱保存。心脏取血后安乐死小鼠。常规剪去毛发、消毒,暴露腹腔; 取小鼠双侧肾脏组织,PBS冲洗; 将一侧肾脏组织固定于4%多聚甲醛溶液(用于病理学观察);将另一侧肾脏组织于-80 ℃冰箱储存(用于后续实验)。

1.4 HE染色

取肾脏组织后,置于4%多聚甲醛中固定48 h,脱水后石蜡包埋、切片、HE染色,显微镜下观察肾脏组织病理结构改变。采用Paller氏评分[16]评估肾小管损伤程度,即在200倍高倍镜下取10个高倍镜视野合计100个肾小管。肾小管明显扩张、细胞扁平(1分);肾小管内出现管型(2分);肾小管管腔内有脱落、坏死细胞,但未成管型或细胞碎片(1分);上皮细胞颗粒变性(1分);空泡变性(1分);细胞核固缩(1分)。

1.5 ELISA检测

肾脏组织称质量,按照1 g组织加入5 mL PBS的比例加入PBS,在冰水浴中尽量剪碎组织,随后按照每20 mg肾脏组织中加入150~200 μL的RIPA裂解液的比例加入裂解液,在冰上使用匀浆机制备成10%肺组织匀浆。将制备好的10%匀浆使用离心机4 ℃,3 000×g离心10 min,离心后的匀浆取上清液进行分装,-80 ℃放置保存。按照ELISA试剂盒说明书检测肾脏组织匀浆炎症因子IL-1β、IL-18水平以及LDHA的含量。

取出-80 ℃储存的血清,逐级解冻后作为待测样品。按照ELISA试剂盒说明书进行检测。使用酶标仪测定各孔光密度值[D(450)]。Excel绘制标准曲线,计算各样本血清Scr、KIM-1和乳酸的含量。

1.6 Western blot检测

取-80 ℃肾脏组织匀浆,蛋白定量,经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳2 h,电转移至聚偏二氟乙烯(PVDF) 膜上,洗膜后加入p-AKT、p-mTOR、PFKFB3一抗和β-actin内参蛋白4 ℃孵育过夜。次日洗膜,加入辣根过氧化物酶(HRP)标记的山羊抗兔二抗(稀释度均为1∶100 000)37 ℃摇床孵育2 h,含吐温-20的Tris-HCl缓冲盐溶液(TBST) 充分洗膜。电化学发光法显色曝光,采集图像,用Image J软件分析各组条带灰度值,以目标蛋白与内参蛋白的灰度值比值反映目标蛋白相对表达量。

1.7 统计学分析

采用Graphpad Prism 8.0软件进行数据分析。实验数据均为计量资料且符合正态分布,以x±s表示,多组间比较采用单因素方差分析,2组间比较采用LSD-t检验。P<0.05为差异有统计学意义。

2 结果 2.1 小鼠一般状态

LPS造模后24 h,Control组小鼠精神状态、饮食、活动、呼吸频率及对刺激的反应较造模之前无明显改变;LPS组小鼠出现发热,心率、呼吸频率明显加快,口鼻腔分泌物增多,精神萎靡,嗜睡,蜷缩,竖毛,少动,拒食或少食,眼角出现分泌物;LPS+WIN组上述表现较LPS组轻微,LPS+WIN+MHY组上述表现较LPS+WIN组明显加重。

2.2 各组小鼠肾脏组织病理结构改变

光镜下Control组为正常肾脏组织,肾脏结构完整,无出血和炎症浸润;LPS组肾小管上皮细胞水肿,细胞体积变大,肾小球结构紊乱,肾小管管腔变窄,间质内有明显出血及大量炎症细胞浸润;LPS+WIN组病理改变明显减轻,肾脏结构较完整,间质仅有少量出血及炎症细胞浸润;LPS+WIN+MHY组病理改变较LPS+WIN组加重,肾脏组织结构破坏,间质内出血及炎症细胞浸润增多,见图 1

图 1 HE染色观察各组小鼠肾脏组织病理变化

与Control组相比,LPS组Paller评分明显增高(P<0.05);与LPS组相比,LPS+WIN组在WIN预处理后Paller评分明显下降(P<0.05);相较于LPS+WIN组,LPS+WIN+MHY组Paller评分升高,差异均有统计学意义(P<0.05),见图 2

1:Control组;2:LPS组;3:LPS+WIN组;4:LPS+WIN+MHY组;a:P<0.05,与Control组比较;b:P<0.05,与LPS组比较;c:P<0.05,与LPS+WIN组比较 图 2 各组小鼠肾脏Paller评分(n=6,x±s)

2.3 各组小鼠肾脏组织IL-1β、IL-18和糖酵解关键酶LDHA含量

ELISA检测结果显示:与Control组相比,LPS组中IL-1β、IL-18、LDHA含量显著升高(P<0.05);与LPS组相比,LPS+WIN组在WIN预处理后IL-1β、IL-18、LDHA含量相对下降(P<0.05);与LPS+WIN组相比,LPS+WIN+MHY组IL-1β、IL-18、LDHA含量增高,差异均有统计学意义(P<0.05),见图 3

1:Control组;2:LPS组;3:LPS+WIN组;4:LPS+WIN+MHY组;a:P<0.05,与Control组比较;b:P<0.05,与LPS组比较;c:P<0.05,与LPS+WIN组比较 图 3 ELISA法检测各组小鼠肾脏组织IL-1β(A)、IL-18(B)和LDHA(C)的含量(n=6,x±s)

2.4 各组小鼠血清肾损伤标志物Scr、KIM-1和糖酵解产物乳酸含量

ELISA检测结果显示:与Control组相比,LPS组Scr、KIM-1、乳酸含量明显增加(P<0.05);与LPS组相比,LPS+WIN组Scr、KIM-1、乳酸含量相对下降(P<0.05);与LPS+WIN组相比,LPS+WIN+MHY组Scr、KIM-1、乳酸含量增高,差异均有统计学意义(P<0.05),见图 4

1:Control组;2:LPS组;3:LPS+WIN组;4:LPS+WIN+MHY组;a:P<0.05,与Control组比较;b:P<0.05,与LPS组比较;c:P<0.05,与LPS+WIN组比较 图 4 ELISA法检测各组小鼠血清Scr(A)、KIM-1(B)和乳酸(C)的含量(n=6,x±s)

2.5 各组小鼠肾脏组织p-AKT、p-mTOR及PFKFB3蛋白表达水平

Western blot检测结果显示:与Control组相比,LPS组p-AKT、p-mTOR及PFKFB3表达显著升高(P<0.05);与LPS组相比,LPS+WIN组p-AKT、p-mTOR及PFKFB3表达相对下降(P<0.05);相较于LPS+WIN组,LPS+WIN+MHY组p-AKT、p-mTOR及PFKFB3表达增高,差异均有统计学意义(P<0.05),见图 5

1:Control组;2:LPS组;3:LPS+WIN组;4:LPS+WIN+MHY组;a:P<0.05,与Control组比较;b:P<0.05,与LPS组比较;c:P<0.05,与LPS+WIN组比较
A:Western blot检测肾脏组织p-AKT、p-mTOR及PFKFB3蛋白表达水平;B:p-AKT蛋白相对表达量;C:p-mTOR蛋白相对表达量;D:PFKFB3蛋白相对表达量
图 5 Western blot检测各组小鼠肾脏组织p-AKT、p-mTOR及PFKFB3蛋白表达水平(n=6,x±s)

3 讨论

本研究采用腹腔注射LPS的方法制备脓毒症小鼠模型。LPS组小鼠造模后24 h,出现发热,心率、呼吸频率明显加快,口鼻腔分泌物增多,精神萎靡,嗜睡,蜷缩,竖毛,少动,拒食或少食等症状,小鼠肾功能明显下降,肾脏病理损伤加重,炎症因子IL-18、IL-1β水平显著升高,证实LPS脓毒症模型成功。

WIN作为大麻素受体1和2的强效激动剂,在细胞和动物模型中发挥广泛的抗炎作用[17]。本研究发现,LPS+WIN组肾脏结构破坏,间质内出血及炎症因子浸润等病理改变减轻,炎症因子IL-1β、IL-18含量降低,血清肾损伤标志物Scr、KIM-1的含量也明显下降,说明WIN可减轻脓毒症AKI中的炎症反应。PÉREZ-DIEGO等[18]研究也证实,WIN可降低脓毒症小鼠血清TNF-α、IL-1β、IL-6等炎症因子水平;FIELDS等[19]研究同样表明,在人类星形胶质细胞中,WIN预先给药可以显著抑制IL-1β诱导的炎症反应。

IL-18作为IL-1超家族的一员,是急性肾损伤的重要介质,可在一定程度上反映肾损伤的水平[20]。KIM-1在急性肾损伤后早期释放,已被广泛用作AKI早期诊断标志物[21]。因此本实验选择肾组织IL-18以及血清KIM-1、Scr用以评估脓毒症AKI小鼠肾功能。

在脓毒症期间,细胞能量代谢从氧化磷酸化转变为糖酵解,这种现象被称为代谢重编程[22]。脓毒症期间有氧糖酵解可以激活炎症小体,释放IL-1β、IL-18和高迁移率族蛋白B1(high mobility group box 1 protein,HMGB1)等促炎因子,而限制糖酵解途径可降低脓毒症早期炎症因子的释放,减轻炎症反应[23-24]。LDHA作为糖酵解途径最后一步的关键酶,可催化丙酮酸生成乳酸,而负责乳酸的形成使LDHA成为有氧糖酵解的关键参与者[25]。果糖-2,6-二磷酸(fructose-2, 6-bisphosphate, F-2, 6-BP)是糖酵解限速酶磷酸果糖激酶-1(phosphofructokinase- 1, PFK-1)的强效变构激活剂,PFKFB3可通过调节F-2, 6-BP合成从而在有氧糖酵解中起关键作用[26]。本实验观察到,LPS组LDHA和PFKFB3表达上调,糖酵解终产物血清乳酸生成增加,且伴随着IL-1β、IL-18水平升高,肾脏病理损伤加重,而WIN预处理糖酵解水平下降,炎症因子含量降低,血清Scr、KIM-1也随之下降,肾损伤有所减轻,表明WIN可通过下调糖酵解水平,抑制炎症反应,减轻脓毒症AKI。LUO等[27]研究表明,靶向抑制糖酵解,可降低IL-1β等炎症因子的激活与释放,减轻脓毒症小鼠肝、肾损伤,提高小鼠存活率,这与本实验结果相一致。HE等[13]经体内、体外实验证实,WIN预处理抑制糖酵解,降低肺泡巨噬细胞向促炎的M1表型极化,减少炎症因子释放,减轻脓毒症ALI。

为了阐明其保护机制,本研究在WIN基础上使用mTOR激活剂MHY1485干预小鼠,MHY1485可通过靶向mTOR的ATP结构域,调节该通路活性[28]。结果发现,MHY1485可拮抗WIN对有氧糖酵解的抑制作用,肾脏糖酵解水平重新升高,炎症因子含量升高,肾脏病理损伤加重,p-AKT、p-mTOR及PFKFB3的表达较LPS+WIN组明显升高。因此我们推测WIN可能通过抑制AKT/mTOR/PFKFB3信号通路激活,下调糖酵解水平,减轻肾脏组织炎症反应。既往研究表明AKT-mTOR信号通路可通过调控下游效应分子,调节细胞生长、增殖和有氧糖酵解[29]。AKT的激活可以动员葡萄糖转运蛋白(glucose transporter, GLUT),激活己糖激酶2(hexokinase2, HK2),从而增强有氧糖酵解和促进癌细胞生长[30]。mTOR可上调PFKFB3的表达加速糖酵解速率[31]。这些研究结果与本实验高度一致。最新研究也发现,WIN能够抑制LPS诱导的AKT和p70S6K(mTOR的主要下游作用靶点)的磷酸化,表明WIN可以抑制LPS诱导的人单核细胞来源的树突状细胞mTOR的活化,从而通过激活自噬抑制代谢重编程,促进调节性T细胞的产生,保护小鼠抵抗LPS诱导的脓毒症[32]

本研究也存在一定局限性,实验仅在动物模型观察WIN在脓毒症AKI中的作用,未在细胞水平进一步验证。WIN也可能通过其他信号通路发挥脓毒症保护作用,还需进一步研究。

综上所述,WIN55212-2可以减轻脓毒症AKI,其机制可能是通过抑制AKT/mTOR/PFKFB3信号通路,降低肾脏糖酵解水平,减轻炎症反应。

参考文献
[1]
FERNANDO S M, ROCHWERG B, SEELY A J E. Clinical implications of the third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. CMAJ, 2018, 190(36): E1058-E1059.
[2]
KUWABARA S, GOGGINS E, OKUSA M D. The pathophysiology of sepsis-associated AKI[J]. Clin J Am Soc Nephrol, 2022, 17(7): 1050-1069.
[3]
MANRIQUE-CABALLERO C L, DEL RIO-PERTUZ G, GOMEZ H. Sepsis-associated acute kidney injury[J]. Crit Care Clin, 2021, 37(2): 279-301.
[4]
POSTON J T, KOYNER J L. Sepsis associated acute kidney injury[J]. BMJ, 2019, k4891.
[5]
KALANTARI K, ROSNER M H. Recent advances in the pharmacological management of sepsis-associated acute kidney injury[J]. Expert Rev Clin Pharmacol, 2021, 14(11): 1401-1411.
[6]
SINGBARTL K, FORMECK C L, KELLUM J A. Kidney-immune system crosstalk in AKI[J]. Semin Nephrol, 2019, 39(1): 96-106.
[7]
SUN L Z, YANG X F, YUAN Z Y, et al. Metabolic reprogramming in immune response and tissue inflammation[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 1990-2001.
[8]
TAN C Y, GU J, LI T, et al. Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK-regulated autophagy[J]. Int J Mol Med, 2021, 47(3): 19.
[9]
LIAO S, LIANG L, YUE C X, et al. CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells[J]. Int J Oncol, 2020, 57(1): 338-354.
[10]
ZHANG T, ZHANG Y G, YANG Z H, et al. Echinococcus multilocularis protoscoleces enhance glycolysis to promote M2 macrophages through PI3K/Akt/mTOR signaling pathway[J]. Pathog Glob Health, 2023, 117(4): 409-416.
[11]
HU X T, XU Q Y, WAN H X, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811.
[12]
WILHELMSEN K, KHAKPOUR S, TRAN A, et al. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55, 212-2 abate the inflammatory activation of human endothelial cells[J]. J Biol Chem, 2014, 289(19): 13079-13100.
[13]
HE Q A, YIN J, ZOU B S, et al. WIN55212-2 alleviates acute lung injury by inhibiting macrophage glycolysis through the miR-29b-3p/FOXO3/PFKFB3 axis[J]. Mol Immunol, 2022, 149: 119-128.
[14]
LIU L Q, YAN M J, YANGR, et al. Adiponectin attenuates lipopolysaccharide-induced apoptosis by regulating the Cx43/PI3K/AKT pathway[J]. Front Pharmacol, 2021, 12: 644225.
[15]
ZHOU J L, YAO W, LI C Y, et al. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells[J]. Cell Death Dis, 2017, 8(8): e3001.
[16]
PALLER M S, HOIDAL J R, FERRIS T F. Oxygen free radicals in ischemic acute renal failure in the rat[J]. J Clin Invest, 1984, 74(4): 1156-1164.
[17]
SU S H, WU Y F, LIN Q, et al. Cannabinoid receptor agonist WIN55, 212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390(12): 1189-1200.
[18]
PÉREZ-DIEGO M, ANGELINA A, MARTÍN-CRUZ L, et al. Cannabinoid WIN55, 212-2 reprograms monocytes and macrophages to inhibit LPS-induced inflammation[J]. Front Immunol, 2023, 14: 1147520.
[19]
FIELDS J A, SWINTON M K, MONTILLA-PEREZ P, et al. The cannabinoid receptor agonist, WIN-55212-2, suppresses the activation of proinflammatory genes induced by interleukin 1 beta in human astrocytes[J]. Cannabis Cannabinoid Res, 2022, 7(1): 78-92.
[20]
MOLEDINA D G, PARIKH C R. Phenotyping of acute kidney injury: beyond serum creatinine[J]. Semin Nephrol, 2018, 38(1): 3-11.
[21]
DIAO H Y, ZHU W, LIU J, et al. Salvianolic acid A improves rat kidney injury by regulating MAPKs and TGF-β1/smads signaling pathways[J]. Molecules, 2023, 28(8): 3630.
[22]
ZHENG Z B, MA H, ZHANG X, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial Sepsis[J]. J Infect Dis, 2017, 215(9): 1396-1406.
[23]
LIU W Z, LIU T Y, ZHENG Y J, et al. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation[J]. J Inflamm Res, 2023, 16: 1195-1207.
[24]
WANG L, WANG D G, ZHANG T L, et al. The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome[J]. Front Immunol, 2023, 14: 1117548.
[25]
POUYSSÉGUR J, MARCHIQ I, PARKS S K, et al. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity—Genetic deconstruction and therapeutic perspectives[J]. Semin Cancer Biol, 2022, 86(Pt 2): 334-346.
[26]
BAO Y F, ZHOU L, DAI D Q, et al. Discover potential inhibitors for PFKFB3 using 3D-QSAR, virtual screening, molecular docking and molecular dynamics simulation[J]. J Recept Signal Transduct, 2018, 38(5/6): 413-431.
[27]
LUO P, ZHANG Q, ZHONG T Y, et al. Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect[J]. Mil Med Res, 2022, 9(1): 22.
[28]
CAI Y, GAO Q, MENG J H, et al. Puerarin suppresses glycolysis and increases cisplatin chemosensitivity in oral squamous cell carcinoma via FBXW7/mTOR signaling[J]. Nutr Cancer, 2023, 75(3): 1028-1037.
[29]
CHOU W C, RAMPANELLI E, LI X, et al. Impact of intracellular innate immune receptors on immunometabolism[J]. Cell Mol Immunol, 2022, 19(3): 337-351.
[30]
ABDEL-WAHAB A F, MAHMOUD W, AL-HARIZY R M. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511.
[31]
FENG Y H, WU L S. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival[J]. Biochem Biophys Res Commun, 2017, 483(2): 897-903.
[32]
ANGELINA A, PÉREZ-DIEGO M, LÓPEZ-ABENTE J, et al. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming[J]. Mucosal Immunol, 2022, 15(1): 96-108.
经国家新闻出版署批准,《第三军医大学学报》于2022年第1期更名为《陆军军医大学学报》。国内统一刊号CN50-1223/R,ISSN 2097-0927。主管单位为陆军军医大学,主办单位为陆军军医大学教研保障中心。

文章信息

董旭鹏, 段倩雯, 马源, 刘澈, 龚禹, 马玉清
DONG Xupeng, DUAN Qianwen, MA Yuan, LIU Che, GONG Yu, MA Yuqing
WIN55212-2通过调控AKT/mTOR/PFKFB3信号通路减轻脓毒症小鼠急性肾损伤
WIN55212-2 alleviates acute kidney injury in septic mice by regulating the AKT/mTOR/PFKFB3 signaling pathway
陆军军医大学学报, 2024, 46(10): 1100-1106
Journal of Army Medical University, 2024, 46(10): 1100-1106
http://dx.doi.org/10.16016/j.2097-0927.202307071

文章历史

收稿: 2023-07-17
修回: 2023-09-25

相关文章

工作空间