0
文章快速检索   高级检索
胰淀素对阿尔茨海默病小鼠脑组织中circRNA和mRNA表达谱的影响
侯明亮1, 马琳秋1, 李金平1, 李小雄1, 马晶晶1, 黄洁1, 廖旗荣1, 杨红岩1, 周华东1,2     
1. 233004 安徽 蚌埠,蚌埠医学院第一附属医院神经内科;
2. 400042 重庆,陆军特色医学中心神经内科
[摘要] 目的 研究胰淀素(islet amyloid polypeptide, IAPP)腹腔注射对阿尔茨海默病(Alzheimer’s disease, AD)小鼠和野生型(wild-type,WT)小鼠脑组织中环状RNA(circular RNA, circRNA)和信使RNA(messenger RNA, mRNA)表达谱的影响。方法 选取10月龄20~30 g雄性APP/PS1转基因AD模型小鼠和C57 WT小鼠各6只,把6只AD小鼠和WT小鼠使用随机数字表法分成2组,每组3只。腹腔注射IAPP的AD小鼠(AD+IAPP)作为实验组,腹腔注射IAPP的WT小鼠(WT+IAPP)作为对照组,腹腔注射相同剂量的磷酸盐缓冲液(PBS)的AD小鼠(AD+PBS)和WT小鼠(WT+PBS)作为空白对照组。干预结束后,提取4组小鼠脑组织总RNA,进行基因芯片测序,筛选出AD+IAPP与WT+IAPP相比差异表达的circRNA和mRNA,以及AD+PBS与WT+PBS相比差异表达的circRNA和mRNA。在AD+IAPP与WT+IAPP相比筛选出来的差异circRNA中,选取6个差异表达的circRNA,进行实时定量聚合酶链反应(qRT-PCR)验证基因芯片结果的可靠性。对差异表达的mRNA进行基因本体论(gene ontology, GO)富集分析与京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集分析。随后构建显著差异表达的circRNA_45921的ceRNA(competitive endogenous RNA)网络。结果 AD+IAPP与WT+IAPP比较,显著差异表达的circRNA共有237个,其中157个上调,80个下调;显著差异表达mRNA共有663个,其中348个上调,315个下调。qRT-PCR结果显示6个差异表达的circRNA与基因芯片结果一致,基因芯片测序结果可靠。GO富集分析显示差异表达上调的mRNA在核苷磷酸结合、细胞器、含磷酸盐化合物代谢过程等GO条目显著富集;差异表达下调的mRNA在跨膜信号受体活性、超分子纤维、组织发育等GO条目显著富集。KEGG富集分析显示差异表达上调的mRNA主要富集于胰岛素分泌、氧化磷酸化、帕金森病等信号通路;差异表达下调的mRNA主要富集于神经活性配体-受体相互作用、钙信号通路、酪氨酸代谢、苯丙氨酸代谢等信号通路。CeRNA网络显示circRNA_45921/miR-34c-5p/Eef2k调控网络可能在IAPP功能发挥中具有作用。结论 腹腔注射IAPP改变AD小鼠和WT小鼠脑组织中circRNA和mRNA的表达谱。差异表达的Paip2、Cdon、Ttr和circRNA_45921/miR-34c-5p/Eef2k调控网络可能在IAPP调节AD的发生发展中起作用。
[关键词] 阿尔茨海默病    胰淀素    环状RNA    信使RNA    
Effect of amylin on expression profiles of circRNAs and mRNAs in brain tissue of Alzheimer's disease mice
HOU Mingliang1, MA Linqiu1, LI Jinping1, LI Xiaoxiong1, MA Jingjing1, HUANG Jie1, LIAO Qirong1, YANG Hongyan1, ZHOU Huadong1,2     
1. Department of Neurology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, 233004;
2. Department of Neurology, Army Medical Center of PLA, Chongqing, 400042, China
[Abstract] Objective To investigate the effects of intraperitoneal injection of islet amyloid polypeptide (IAPP) on the expression profiles of circular RNAs (circRNAs) and messenger RNAs (mRNAs) in the brain tissue of Alzheimer's disease (AD) mice and wild-type (WT) mice. Methods Six 10-month-old male APP/PS1 transgenic AD model and C57 WT mice (20~30 g) were employed in this study. They were randomly divided into 2 groups, and further assigned into AD+IAPP (AD mice with IAPP intraperitoneal injection), WT+IAPP (WT mice with IAPP intraperitoneal injection), AD+PBS (AD mice injected with same dose of PBS intraperitoneally) and WT+PBS (WT mice with intraperitoneal injection of PBS) groups (n=3). After the intervention, total RNA was extracted from the brain tissue of 4 groups of mice, and gene chip sequencing was performed to screen differentially expressed circRNAs and mRNAs between AD+IAPP and WT+IAPP mice and between AD+PBS and WT+PBS mice. Among the differentially expressed circRNAs between AD+IAPP and WT+IAPP mice, 6 circRNAs were selected and subjected to real-time quantitative polymerase chain reaction (qRT-PCR) to verify the reliability of the microarray results. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway enrichment analysis were performed on the differentially expressed mRNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was constructed for significantly differentially expressed circRNA_45921. Results There were 237 circRNAs significantly differentially expressed between AD+IAPP and WT+IAPP mice, of which 157 were up-regulated and 80 were down-regulated. Totally 663 significantly differentially expressed mRNAs were found, including 348 up-regulated and 315 down-regulated. The results of qRT-PCR showed that the differential expression of 6 circRNAs was consistent with the results of gene chip, indicating that the results of gene chip sequencing were reliable. GO enrichment analysis revealed that differentially up-regulated mRNAs were significantly enriched in nucleoside phosphate binding, organelles and metabolism processes of phosphate containing compounds. The differentially down-regulated mRNAs were significantly enriched in transmembrane signal receptor activity, supramolecular fibers and tissue development. KEGG enrichment analysis indicated that differentially upregulated mRNAs were mainly enriched in signal pathways such as insulin secretion, oxidative phosphorylation, and Parkinson's disease, while those down-regulated ones in signal pathways such as neuroactive ligand receptor interactions, calcium signaling pathways, tyrosine metabolism and phenylalanine metabolism. CeRNA network displayed that the circRNA_45921/miR-34c-5p/Eef2k regulatory network may play a role in the functioning of IAPP. Conclusion Intraperitoneal injection of IAPP alters the expression profiles of circRNA and mRNA in the brain tissues of AD mice and WT mice. Differentially expressed Paip2, Cdon, Ttr, and circRNA_45921/miR-34c-5p/Eef2k regulatory network may have regulatory roles in IAPP regulating the development of AD.
[Key words] Alzheimer's disease    amylin    circRNA    mRNA    

阿尔茨海默病(Alzheimer’s disease, AD)是一种神经退行性疾病,其特征在于含有β-淀粉样蛋白(Amyloid β, Aβ)的细胞外斑块和tau蛋白的细胞内神经原纤维缠结(neurofibrillary tangles, NFT)[1]。在65岁及以上的美国人中,AD位居第五大死因,且死亡人数呈逐年增加趋势[2]。胰淀素(islet amyloid polypeptide, IAPP)是由胰岛β细胞分泌的一种含有37-氨基酸残基的长肽[3]。IAPP沉积是2型糖尿病(diabetes mellitus type 2,T2DM)的典型病理特征,且错误折叠的IAPP可以在AD和T2D患者的大脑中聚集和沉积[4-5]。目前,IAPP与Aβ相互作用对AD的影响,仍没有达成共识。有研究表明,IAPP作为一种调节葡萄糖稳态的脑肠神经肽调节剂, 广泛存在于脑中[6],IAPP与Aβ可通过交叉播种相互作用,形成神经元外淀粉样斑块沉积,并促进Aβ聚集,造成认知功能损伤,导致AD的发生发展[7-9]。另一些研究发现,可溶性IAPP与AD的Aβ具有高亲和力,并抑制Aβ的纤维生成和细胞毒性,减少Aβ斑块生成[10-11]。动物实验研究表明,在小鼠外周注射IAPP或其非淀粉样蛋白生成类似物普兰林肽后,Aβ从大脑转移到血液增加,改善AD小鼠认知功能[12-15]。IAPP成为AD治疗和预防的潜在分子靶点。对IAPP分子功能及其与Aβ之间的相互作用对研究AD的发病机制和治疗具有重要意义。

circRNA是一类缺乏典型的5’帽和3’多聚A尾,并共价闭合的新的非编码RNA,circRNA对核酸外切酶的消化具有高度抗性并且相对稳定,通过海绵化特定的microRNA来调节基因表达,虽然它们被认为是非编码RNA,但一些circRNA已被证明具有产生肽的潜力[16]。有研究发现,circRNA在哺乳动物的大脑中具有高度代表性,在衰老、神经发育和突触活动中发挥调节作用,可能导致AD的发展[17-18]

目前,IAPP对AD的作用尚不清楚。与AD相关的circRNA的功能了解甚少,但circRNA的稳定性和特异性表达谱表明circRNA是治疗AD的候选者,并受到广泛关注。本研究利用基因芯片技术检测IAPP腹腔注射后AD小鼠脑组织中circRNA和mRNA表达谱变化,并对筛选的差异转录本进行分析,探究IAPP腹腔注射对AD小鼠脑组织中circRNA表达谱的影响,识别和验证关键circRNA,为开发治疗AD的circRNA相关核苷酸药物提供新的分子靶点。

1 材料与方法 1.1 主要试剂和仪器

IAPP购自重庆市思恩特医疗器械有限公司,Arraystar Mouse circRNA Array V2及配套试剂盒购自美国Arraystar公司,TRIzol试剂和SuperScriptTM Ⅲ RT master mix试剂盒购自美国Invitrogen公司,RNA酶试剂盒购自美国Qiagen公司,2×PCR master mix试剂盒购自美国Arraystar公司。

NanoDrop ND-1000分光光度仪为美国NanoDrop公司产品,Agilent Scanner G2505C、Agilent Feature Extraction (v11.0.1.1)软件、GeneSpring GX (v12.1)软件为美国Agilent公司产品,QuantStudio5 Real-time PCR System为美国Applied Biosystems公司产品。

1.2 小鼠脑组织样本

脑组织样本取自腹腔注射IAPP溶液和相同剂量磷酸盐缓冲液的10月龄雄性APP/PS1转基因AD模型小鼠和C57野生型老年小鼠[C57WT,购自南京君科生物工程有限公司,动物许可证号:SCXK(苏)2020-0009],体质量20~30 g,AD小鼠和C57 WT小鼠各6只,使用随机数字表法分为4组:AD+IAPP、WT+IAPP、AD+PBS与WT+PBS,每组各3只小鼠。IAPP溶液浓度0.5 μmol/L,溶剂为PBS,剂量200 μg/kg,每日1次。腹腔注射IAPP溶液干预时间均为10周,结束后立即颈椎脱位处死,剥离完整脑组织,保存在-80 ℃冰箱中备用。实验过程中遵循实验动物伦理规定。

1.3 基因芯片测序和数据分析

总RNA提取按照TRIzol试剂盒说明操作。使用Arraystar Mouse circRNA Array V2及配套试剂盒完成基因芯片杂交;NanoDrop ND-1000测定RNA浓度和纯度;Agilent Scanner G2505C对基因芯片进行扫描。根据扫描结果,使用Agilent Feature Extraction软件读取芯片信号强度和获得原始数据;GeneSpring GX(v12.1)软件将原始数据标准化处理后进行差异表达分析。差异表达的circRNA和mRNA筛选条件为:差异倍数的绝对值≥1.5,P值<0.05且FDR<0.5。

1.4 qRT-PCR验证circRNA的表达

选取具有潜在生物学功能的6个差异表达的circRNA进行qRT-PCR检测。使用TRI Reagent抽提AD+IAPP与WT+IAPP脑组织总RNA,NanoDrop ND-1000测定RNA浓度和纯度。按照SuperScriptTM Ⅲ Reverse Transcriptase kit说明书,将提取的RNA逆转录为cDNA。逆转录条件为:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,40个循环。使用Primer 5.0设计引物,引物序列见表 1。将所得cDNA按照2×PCR master mix试剂盒说明进行扩增,反应条件为:95 ℃ 10 min;95 ℃ 10 s,60 ℃ 60 s,40个循环。以甘油醛-3-磷酸脱氢酶(GAPDH)为内参,由反应曲线得出阈值循环参数后,应用QuantStudioTM 5 real-time PCR仪分析荧光阈值(cyclethreshold,Ct)。使用2-ΔΔCt法计算目的基因的相对表达量。重复3次实验,结果取平均值。

表 1 目的基因引物序列和长度
基因名(CircRNA) 引物序列 产物长度/bp
circRNA_35138 正向: 5′-TAGCGTCTGCCCTAAGAGGTA-3′
反向: 5′-CCACTTGTGCCAATTTGTTGT-3′
181
circRNA_38989
正向引物
正向: 5′-TCCTGAAGCGGACTCACCAA-3′
反向: 5′-GGATTTGCCAATACCTGTCTCACT-3′
192
circRNA_22593
正向引物
正向: 5′-ATGTGGGTGGCTTATCTGG-3′
反向: 5′-ACTGCGGATGTTGGTTGTT-3′
61
circRNA_36807 正向: 5′-TTCGGGATGAGCACAAGGT-3′
反向: 5′-GGCTGATTGTCATGGTGGAA-3′
71
circRNA_38835 正向: 5′-GCTTATCGTGCCAACTTCTGT-3′
反向: 5′-GAGTGATGTCAAAAAGTGACCTGT-3′
105
circRNA_45921 正向: 5′-ATGTGGGAGCGTGGAGATAA-3′
反向: 5′-CATCACGGTCAGCATTCTTG-3′
298
GAPDH 正向: 5′-CACTGAGCAAGAGAGGCCCTAT-3′
反向: 5′-GCAGCGAACTTTATTGATGGTATT-3′
144

1.5 GO富集分析与KEGG通路富集分析

将差异表达的mRNA导入GO数据库(http://www.geneontology.org)进行富集分析,对分子功能、生物过程和细胞成分3个领域的GO条目上差异表达基因的数目进行分析,从而获得显著富集的GO条目和预测差异表达基因的生物学功能。将差异表达的mRNA导入KEGG数据库(http://www.genome.jp/kegg)进行通路富集分析,获得差异表达的mRNA显著富集的信号通路。

1.6 CeRNA网络构建

CeRNA假说表明mRNA和circRNA转录本可以通过microRNA反应元件与microRNA靶向结合来相互调控基因表达。为了寻找mRNA和circRNA与microRNA的潜在靶点,采用基于TargetScan和miRanda的miRNA靶点预测数据库进行预测。根据预测结果,通过合并mRNA和circRNA共同的靶向miRNA,利用Cytoscape构建ceRNA网络图。

1.7 统计学分析

差异表达基因筛选使用R-4.1,应用Graphpad Prism 8.0统计学软件进行数据分析和统计图绘制,组间比较采用独立样本t检验,以P<0.05为差异有统计学意义。

2 结果 2.1 circRNA和mRNA的差异表达分析

AD+IAPP与WT+IAPP芯片测序结果显示,显著差异表达的circRNA共有237个,其中157个上调,80个下调;显著差异表达mRNA共有663个,其中348个上调,315个下调,见图 1。热图显示,AD+IAPP与WT+IAPP小鼠脑组织的circRNA和mRNA基因表达谱存在显著差异,见图 2。差异表达前10位的circRNA和mRNA见表 2。这些差异表达的circRNA和mRNA在AD+PBS与WT+PBS小鼠之间并不存在差异表达,见表 3,说明这些差异表达的circRNA和mRNA均受IAPP调节。

红色为显著上调基因; 绿色为显著下调基因; 灰色为无差异变化的基因 图 1 AD+IAPP与WT+IAPP小鼠比较差异表达circRNA(A)和mRNA(B)的火山图

1~3:WT+IAPP组;4~6:AD+IAPP组;纵轴为基因聚类,1行代表 1个基因;红色表示上调,绿色表示下调,颜色越亮基因相对表达量越高 图 2 AD+IAPP与WT+IAPP小鼠比较差异表达circRNA(A)和mRNA(B)的热图

表 2 AD+IAPP与WT+IAPP小鼠比较差异表达的circRNA和mRNA
CircRNA mRNA
基因名称 差异倍数 P 上/下调 基因名称 差异倍数 P 上/下调
circRNA_39081 3.288 0.046 上调 Gm42417 2.736 0.003 上调
circRNA_26540 3.262 0.029 上调 Paip2 2.652 0.009 上调
circRNA_22892 2.881 0.045 上调 Cdon 2.637 0.002 上调
circRNA_39877 2.872 0.046 上调 Cmtm3 2.457 0.003 上调
circRNA_43335 2.856 0.031 上调 Erbb3 2.429 0.003 上调
circRNA_24245 5.562 0.016 下调 Ttr 28.286 0.000 下调
circRNA_45921 5.346 0.026 下调 1500015O10Rik 19.173 0.000 下调
circRNA_29625 4.465 0.019 下调 F5 6.497 0.000 下调
circRNA_007951 3.705 0.023 下调 Aldh1a2 5.236 0.003 下调
circRNA_19469 3.269 0.023 下调 Tmem212 5.066 0.004 下调

表 3 差异表达的circRNA和mRNA在AD+PBS与WT+PBS小鼠比较
CircRNA mRNA
基因名称 差异倍数 P 上/下调 基因名称 差异倍数 P 上/下调
circRNA_39081 1.558 0.262 无差异 Gm42417 1.054 0.755 无差异
circRNA_26540 1.651 0.080 无差异 Paip2 2.017 0.120 无差异
circRNA_22892 1.348 0.166 无差异 Cdon 1.055 0.445 无差异
circRNA_39877 1.352 0.086 无差异 Cmtm3 1.073 0.745 无差异
circRNA_43335 1.439 0.083 无差异 Erbb3 1.167 0.444 无差异
circRNA_24245 3.270 0.179 无差异 Ttr 5.045 0.169 无差异
circRNA_45921 3.634 0.194 无差异 1500015O10Rik 4.355 0.147 无差异
circRNA_29625 2.566 0.235 无差异 F5 3.456 0.146 无差异
circRNA_007951 2.241 0.141 无差异 Aldh1a2 2.526 0.143 无差异
circRNA_19469 2.273 0.125 无差异 Tmem212 1.734 0.240 无差异

2.2 qRT-PCR验证circRNA的表达

为了验证芯片结果的可靠性,挑选具有潜在生物学功能的6个差异表达的circRNA进行qRT-PCR验证,结果显示,AD+IAPP与WT+IAPP相比,circRNA-35138、circRNA-38989、circRNA-22593表达显著上调(P<0.05),circRNA-36807、circRNA-38835、circRNA-45921表达显著下调(P<0.05),见图 3。qRT-PCR检测结果与基因芯片结果一致,提示circRNA基因芯片测序结果可靠。

a: P<0.05, b: P<0.01
AD为阿尔茨海默病鼠;WT为野生型老年鼠;IAPP为胰淀素
图 3 AD+IAPP与WT+IAPP小鼠脑组织目的基因相对表达量

2.3 差异表达mRNA的GO和KEGG通路富集分析

GO富集分析显示:663个差异表达的mRNA被富集到1 019个GO条目,其中348个上调mRNA被富集到525个GO条目。315个下调的mRNA被富集到494个GO条目,差异均有统计学意义(P<0.05)。差异表达上调的mRNA在分子功能领域主要富集于核苷磷酸结合、催化剂活性等;在细胞组分领域主要富集于细胞器、细胞质等;在生物过程领域主要富集于含磷酸盐化合物代谢过程、初级代谢过程等。差异表达下调的mRNA在分子功能领域主要富集于跨膜信号受体活性、分子传导活性等;在细胞组分领域主要富集于膜固有成分、超分子纤维等;在生物过程领域主要富集于组织发育、系统进程等。差异表达mRNA在分子功能、细胞成分、生物过程3个领域富集评分前10的GO条目见图 4

A:显著上调的差异表达mRNA的GO条目;B:显著下调的差异表达mRNA的GO条目 图 4 AD+IAPP与WT+IAPP小鼠相比差异表达的mRNA在分子功能、细胞成分和生物学过程3个领域的GO分析

KEGG富集分析显示: 663个差异表达的mRNA被富集到16个通路,其中348个上调的mRNA被富集到8个通路,315个下调的mRNA被富集到8个通路,差异均有统计学意义(P<0.05)。差异表达上调的mRNA主要富集于胰岛素分泌、氧化磷酸化、帕金森病等信号通路;差异表达下调的mRNA主要富集于神经活性配体-受体相互作用、钙信号通路、酪氨酸代谢、苯丙氨酸代谢等信号通路。KEGG富集分析评分前10位的通路见图 5

A:显著上调的差异表达mRNA的富集通路; B: 显著下调的差异表达mRNA的富集通路 图 5 AD+IAPP与WT+IAPP小鼠相比差异表达的mRNA的KEGG分析

2.4 CeRNA分析

AD+IAPP与WT+IAPP小鼠相比,circRNA_45921显著下调,qRT-PCR验证结果与芯片结果相同。因此,选择circRNA_45921作为miRNA靶点构建ceRNA网络, 见图 6。CeRNA网络分析表明,circRNA_45921与miR-34c-5p靶向结合具有较高的预测评分。miR-34c-5p与真核细胞延伸因子2激酶(eukaryotic elongation factor 2 kinase,Eef2k)靶向结合具有较高的预测评分。合并circRNA_45921和Eef2k的共同靶向miRNA,获得了circRNA_45921的ceRNA网络circRNA_45921/miR-34c-5p/Eef2k调控网络。

棕色表示 circRNA;红色表示 microRNA;蓝色表示 mRNA 图 6 circRNA_45921的ceRNA分析

3 讨论

在生理条件下,IAPP与胰岛素协同从胰岛β细胞释放,共同调节糖代谢[19]。在AD或T2DM小鼠,IAPP可因聚集和沉积而失去功能,形成有毒的低聚物和淀粉样纤维[20]。研究发现,IAPP可与Aβ相互作用共同沉积在脑内,加重AD病理[7-8]。本研究采用基因芯片技术,AD+IAPP与WT+IAPP测序结果比较,共有663个差异mRNA,包括上调的Paip2、Cdon和下调的Ttr。多聚(A)结合蛋白相互作用蛋白2(Paip2)是一种翻译抑制蛋白,有研究发现抗Paip2自身抗体的产生与ApoE4有关,APOE是迟发型阿尔兹海默症(AD)的主要风险因子,Paip2可能与脑内炎性病理相关。抗Paip2自身抗体升高与MCI和AD的风险显著相关,认为其可能是AD的潜在诊断生物标志物[21-22]。癌基因下调的细胞黏附分子相关蛋白(Cdon)是一种凋亡诱导蛋白,其下调对于促进SH-SY5Y神经细胞存活是必需的[23]。在体试验表明,Cdon可能与TNF-α、Il-1β相互作用调节神经炎症。Cdon敲除小鼠的血脑屏障紧密性导致白细胞浸润减少,小胶质细胞和星形胶质细胞活化减少以及神经元存活增加[24]。转甲状腺素(Ttr)是血浆和脑脊液中甲状腺素和视黄醇的载体蛋白,已被证明可以与Aβ结合。不仅如此,Ttr还被认为可以防止Aβ沉积[25]。ZISKIN等[26]通过磷酸化tau免疫染色发现,在皮层区域,Ttr蛋白沉积的下方观察到磷酸化tau聚集体,这表明Ttr和tau病理之间存在潜在联系。腹腔注射IAPP使得Paip2和Cdon的表达上调,Ttr的表达下调,可能导致Aβ的沉积增加、Tau蛋白磷酸化和神经炎症相关分子表达增加。提示腹腔注射IAPP可能通过Paip2、Cdon和Ttr调节AD的发生和发展[27]。一项与本研究类似的实验结果显示,腹腔注射IAPP降低了大脑皮质和海马Aβ的沉积,增加脑脊液Aβ水平。同时,腹腔注射IAPP改善了转基因AD鼠的认知功能,而对野生型老年鼠没有影响[13]。本研究为IAPP的分子机制提供了新的见解,IAPP通过Paip2、Cdon或Ttr调节Aβ、tau病理和脑内炎性病理,有待进一步研究。

AD+IAPP与WT+IAPP比较,显著差异表达的circRNA共有237个。包括上调的circRNA_39081和下调的circRNA_45921等。相关研究表明,circRNA_39081的亲本基因Sparcl1在人和小鼠海马中均存在circRNA转录本(如hsa_circ_0127250, mmu_circ_0011950)。circRNA_45921的亲本基因Phka2在人前额叶、颞叶、间脑存在circRNA转录本(如hsa_circ_0140034)[28]。本研究通过circRNA芯片测序小鼠脑组织存在Sparcl1和Phka2的circRNA转录本。研究表明,circPhka2在人脑内是一种环状且稳定的转录物,主要位于细胞质中。circPhka2可以靶向结合miR-574-5p,上调SOD2和降低Bax表达,促进细胞增殖,抑制凋亡和氧化应激[29]。并且miR-574-5p在3′UTR具有与BACE1(β-site amyloid precursor protein cleaving enzyme 1,β-secretase)结合位点。BACE1不仅促进Aβ的沉积,而且增加的BACE1活性可能影响正常的突触功能,导致认知障碍[30]。AD小鼠腹腔注射IAPP使circRNA_45921表达下调,IAPP可能通过circRNA_45921/miR-574-5p/BACE1轴调控Aβ沉积和AD的进展。CircPAIP2是一种保留内含子的circRNA,它上调记忆相关的亲代基因Paip2[31]。IAPP腹腔注射可能通过相关circRNA上调Paip2、Cdon和下调Ttr的表达,调节AD的发展。同时,circRNA_39081和circRNA_45921也可能是潜在的AD诊断分子标志物和治疗靶点。

本研究GO和KEGG富集分析结果表明,IAPP可能通过细胞器、胰岛素分泌、氧化磷酸化、帕金森病等途径参与调节AD的发生发展。相关研究发现,IAPP可使细胞膜过度弯曲而破坏膜结构,导致AD和帕金森病的发生[32]。IAPP和胰岛素是由胰岛β细胞共包装和协同分泌,胰岛素抵抗可能导致AD病理,IAPP破坏囊泡功能,与阿尔茨海默病和帕金森病的发病机制有关[33-34]。IAPP诱导tau蛋白磷酸化,在体外和体内增强tau蛋白的神经元毒性,导致小鼠突触功能障碍和记忆缺陷[35]。本研究为IAPP参与AD调节的作用机制研究提供了新的方向,IAPP可能通过具有调节胰岛素分泌、帕金森病或氧化磷酸化作用的基因(如COX6c)改变AD的病理表现。

CeRNA结果表明,circRNA_45921/miR-34c-5p/Eef2k调控网络显示较高预测评分。已有研究表明,miR-34c-5p的过度表达显著降低了微管相关tau蛋白(microtubule-associated protein tau,MAPT)的表达[36]。Eef2k诱导Eef2过度磷酸化,导致蛋白质合成受到抑制。Eef2k减少改善了记忆缺陷和海马长时程增强损伤,而不改变Aβ病理[37]。这提示circRNA_45921/miR-34c-5p/Eef2k调控网络可能在IAPP调节AD发生发展过程中发挥作用,也为IAPP作用的分子机制提供新的思路。

本研究取材自小鼠脑组织进行芯片测序,没有进行细胞水平更加深入的研究,以验证所确定的circRNA功能及其与IAPP之间的作用关系;结果显示Ttr下调,相关研究表明Ttr可能是治疗AD的靶点[38],本研究没有对IAPP功能进行进一步验证。

综上所述,本研究结果表明AD+IAPP与WT+IAPP相比,两组小鼠脑组织中circRNA和mRNA的表达谱均发生改变。差异表达的circRNA如circRNA_45921,可能通过circRNA_45921/miR-574-5p/BACE1轴调节Aβ沉积和AD的进展。差异表达的mRNA如Paip2、Cdon和Ttr等可能导致Aβ的沉积增加、Tau蛋白磷酸化和神经炎症相关分子表达增加。差异表达的mRNA主要通过胰岛素分泌、氧化磷酸化、神经活性配体-受体相互作用等通路参与调节AD的发生发展。circRNA_45921/miR-34c-5p/Eef2k调控网络可能在IAPP调节AD的发生发展中起作用。

利益冲突声明  所有作者声明不存在利益冲突

作者贡献声明  侯明亮:实验操作、论文撰写;马琳秋、李金平、黄洁、廖旗荣、杨红岩:数据整理;李小雄、马琳秋:统计学分析;周华东:研究指导、论文修改、经费支持

参考文献
[1]
KNOPMAN D S, AMIEVA H, PETERSEN R C, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7: 33. DOI:10.1038/s41572-021-00269-y
[2]
2022 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2022, 18(4): 700-789. DOI: 10.1002/alz.12638.
[3]
WESTERMARK P, ANDERSSON A, WESTERMARK G T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus[J]. Physiol Rev, 2011, 91(3): 795-826. DOI:10.1152/physrev.00042.2009
[4]
ZHANG Y, SONG W H. Islet amyloid polypeptide: another key molecule in Alzheimer's pathogenesis?[J]. Prog Neurobiol, 2017, 153: 100-120. DOI:10.1016/j.pneurobio.2017.03.001
[5]
MORENO-GONZALEZ I, EDWARDS Ⅲ G, SALVADORES N, et al. Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding[J]. Mol Psychiatry, 2017, 22(9): 1327-1334. DOI:10.1038/mp.2016.230
[6]
KAPURNIOTU A. Enlightening amyloid fibrils linked to type 2 diabetes and cross-interactions with Aβ[J]. Nat Struct Mol Biol, 2020, 27(11): 1006-1008. DOI:10.1038/s41594-020-00523-z
[7]
HU R D, ZHANG M Z, CHEN H, et al. Cross-seeding interaction between β-amyloid and human islet amyloid polypeptide[J]. ACS Chem Neurosci, 2015, 6(10): 1759-1768. DOI:10.1021/acschemneuro.5b00192
[8]
BHARADWAJ P, SOLOMON T, SAHOO B R, et al. Amylin and beta amyloid proteins interact to form amorphous hetero complexes with enhanced toxicity in neuronal cells[J]. Sci Rep, 2020, 10: 10356. DOI:10.1038/s41598-020-66602-9
[9]
JACKSON K, BARISONE G A, DIAZ E, et al. Amylin deposition in the brain: a second amyloid in Alzheimer disease?[J]. Ann Neurol, 2013, 74(4): 517-526. DOI:10.1002/ana.23956
[10]
YAN L M, VELKOVA A, TATAREK-NOSSOL M, et al. IAPP mimic blocks Abeta cytotoxic self-assembly: cross-suppression of amyloid toxicity of Abeta and IAPP suggests a molecular link between Alzheimer's disease and type Ⅱ diabetes[J]. Angew Chem Int Ed Engl, 2007, 46(8): 1246-1252. DOI:10.1002/anie.200604056.[PubMed
[11]
YAN L M, VELKOVA A, TATAREK-NOSSOL M, et al. Selectively N-methylated soluble IAPP mimics as potent IAPP receptor agonists and nanomolar inhibitors of cytotoxic self-assembly of both IAPP and Aβ40[J]. Angewandte Chemie Int Ed, 2013, 52(39): 10378-10383. DOI:10.1002/anie.201302840
[12]
AFTABIZADEH M, TATAREK-NOSSOL M, ANDREETTO E, et al. Blocking inflammasome activation caused by β-amyloid peptide (aβ) and islet amyloid polypeptide (IAPP) through an IAPP mimic[J]. ACS Chem Neurosci, 2019, 10(8): 3703-3717. DOI:10.1021/acschemneuro.9b00260
[13]
ZHU H, WANG X, WALLACK M, et al. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease[J]. Mol Psychiatry, 2015, 20(2): 252-262. DOI:10.1038/mp.2014.17
[14]
ADLER B L, YARCHOAN M, HWANG H M, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition[J]. Neurobiol Aging, 2014, 35(4): 793-801. DOI:10.1016/j.neurobiolaging.2013.10.076
[15]
SCHULTZ N, JANELIDZE S, BYMAN E, et al. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer's disease[J]. PLoS One, 2019, 14(6): e0218561. DOI:10.1371/journal.pone.0218561
[16]
IDDA M L, MUNK R, ABDELMOHSEN K, et al. Noncoding RNAs in Alzheimer's disease[J]. Wiley Interdiscip Rev RNA, 2018, 9(2): e1463. DOI:10.1002/wrna.1463
[17]
SONG C H, ZHANG Y F, HUANG W Y, et al. Circular RNA Cwc27 contributes to Alzheimer's disease pathogenesis by repressing Pur-α activity[J]. Cell Death Differ, 2022, 29(2): 393-406. DOI:10.1038/s41418-021-00865-1
[18]
MO D D, LI X P, RAABE C A, et al. Circular RNA encoded amyloid beta peptides-a novel putative player in alzheimer's disease[J]. Cells, 2020, 9(10): 2196. DOI:10.3390/cells9102196
[19]
BHAGAT V, VERCHERE C B. A small molecule improves diabetes in mice expressing human islet amyloid polypeptide[J]. Islets, 2023, 15(1): 12-15. DOI:10.1080/19382014.2022.2163829
[20]
BOCCARDI V, MURASECCO I, MECOCCI P. Diabetes drugs in the fight against Alzheimer's disease[J]. Ageing Res Rev, 2019, 54: 100936. DOI:10.1016/j.arr.2019.100936
[21]
YOSHIKAWA T, WU J F, OTSUKA M, et al. ROCK inhibition enhances microRNA function by promoting deadenylation of targeted mRNAs via increasing PAIP2 expression[J]. Nucleic Acids Res, 2015, 43(15): 7577-7589. DOI:10.1093/nar/gkv728
[22]
SHIM S M, KOH Y H, KIM J H, et al. Author Correction: a combination of multiple autoantibodies is associated with the risk of Alzheimer's disease and cognitive impairment[J]. Sci Rep, 2022, 12: 2328. DOI:10.1038/s41598-021-04556-2
[23]
ULUCA B, LEKTEMUR ESEN C, SARITAS ERDOGAN S, et al. NFI transcriptionally represses CDON and is required for SH-SY5Y cell survival[J]. Biochim Biophys Acta Gene Regul Mech, 2022, 1865(2): 194798. DOI:10.1016/j.bbagrm.2022.194798
[24]
CHAPOULY C, HOLLIER PL, GUIMBAL S, et al. Desert hedgehog-driven endothelium integrity is enhanced by Gas1 (growth arrest-specific 1) but negatively regulated by Cdon (cell adhesion molecule-related/downregulated by oncogenes)[J]. Arterioscler Thromb Vasc Biol, 2020, 40(12): e336-e349. DOI:10.1161/ATVBAHA.120.314441
[25]
SOUSA J C, CARDOSO I, MARQUES F, et al. Transthyretin and Alzheimer's disease: where in the brain?[J]. Neurobiol Aging, 2007, 28(5): 713-718. DOI:10.1016/j.neurobiolaging.2006.03.015
[26]
ZISKIN J L, GREICIUS M D, ZHU W, et al. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia[J]. Acta Neuropathol Commun, 2015, 3: 43. DOI:10.1186/s40478-015-0216-0
[27]
张国新, 彭琴玉, 郭笑迪, 等. 胰岛淀粉样多肽在阿尔茨海默病发病机制中的作用研究进展[J]. 卒中与神经疾病, 2022, 29(3): 291-295, 299.
ZHANG G X, PENG Q Y, GUO X D, et al. Research progress on the role of islet amyloid polypeptide in the pathogenesis of Alzheimer’s disease[J]. Stroke Nerv Dis, 2022, 29(3): 291-295, 299. DOI:10.3969/j.issn.1007-0478.2022.03.019
[28]
RYBAK-WOLF A, STOTTMEISTER C, GLAŽAR P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. DOI:10.1016/j.molcel.2015.03.027
[29]
YANG X B, LI X Y, ZHONG C H, et al. Circular RNA circPHKA2 relieves OGD-induced human brain microvascular endothelial cell injuries through competitively binding miR-574-5p to modulate SOD2[J]. Oxid Med Cell Longev, 2021, 2021: 3823122. DOI:10.1155/2021/3823122
[30]
KU T, LI B, GAO R, et al. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration[J]. Part Fibre Toxicol, 2017, 14(1): 34. DOI:10.1186/s12989-017-0215-3
[31]
LU D, XU A D. Mini review: circular RNAs as potential clinical biomarkers for disorders in the central nervous system[J]. Front Genet, 2016, 7: 53. DOI:10.3389/fgene.2016.00053
[32]
BRENDER J R, SALAMEKH S, RAMAMOORTHY A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective[J]. Acc Chem Res, 2012, 45(3): 454-462. DOI:10.1021/ar200189b
[33]
PRUZIN J J, NELSON P T, ABNER E L, et al. Review: Relationship of type 2 diabetes to human brain pathology[J]. Neuropathol Appl Neurobiol, 2018, 44(4): 347-362. DOI:10.1111/nan.12476
[34]
ANGUIANO M, NOWAK R J, LANSBURY P T Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type Ⅱ diabetes[J]. Biochemistry, 2002, 41(38): 11338-11343. DOI:10.1021/bi020314u
[35]
ZHANG G, MENG L, WANG Z, et al. Islet amyloid polypeptide cross-seeds tau and drives the neurofibrillary pathology in Alzheimer's disease[J]. Mol Neurodegener, 2022, 17(1): 12. DOI:10.1186/s13024-022-00518-y
[36]
WU H, HUANG M, LU M J, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel[J]. Cancer Chemother Pharmacol, 2013, 71(5): 1159-1171. DOI:10.1007/s00280-013-2108-y
[37]
BECKELMAN B C, YANG W Z, KASICA N P, et al. Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer's disease model mice[J]. J Clin Investig, 2019, 129(2): 820-833. DOI:10.1172/jci122954
[38]
ANKARCRONA M, WINBLAD B, MONTEIRO C, et al. Current and future treatment of amyloid diseases[J]. J Intern Med, 2016, 280(2): 177-202. DOI:10.1111/joim.12506
经国家新闻出版署批准,《第三军医大学学报》于2022年第1期更名为《陆军军医大学学报》。国内统一刊号CN50-1223/R,ISSN 2097-0927。主管单位为陆军军医大学,主办单位为陆军军医大学教研保障中心。

文章信息

侯明亮, 马琳秋, 李金平, 李小雄, 马晶晶, 黄洁, 廖旗荣, 杨红岩, 周华东
HOU Mingliang, MA Linqiu, LI Jinping, LI Xiaoxiong, MA Jingjing, HUANG Jie, LIAO Qirong, YANG Hongyan, ZHOU Huadong
胰淀素对阿尔茨海默病小鼠脑组织中circRNA和mRNA表达谱的影响
Effect of amylin on expression profiles of circRNAs and mRNAs in brain tissue of Alzheimer's disease mice
陆军军医大学学报, 2023, 45(19): 2018-2028
Journal of Army Medical University, 2023, 45(19): 2018-2028
http://dx.doi.org/10.16016/j.2097-0927.202304089

文章历史

收稿: 2023-04-21
修回: 2023-05-17

相关文章

工作空间