|Table of Contents|

lcohol exposure during pregnancy causes non-compaction cardiomyopathy in offspring mice



Research Field:
Publishing date:



lcohol exposure during pregnancy causes non-compaction cardiomyopathy in offspring mice


ZHOU Huiming JIANG Kunfeng LYU Tiewei LIU Lingjun TIAN Jie

Department of Cardiology, Key Laboratory of Child Development and Disorders of Ministry of Education, International Science and Technology Cooperation Base of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China


non-compaction cardiomyopathy alcohol exposure pregnancy offspring mice

R322.11; R541; R715.3

Objective     To investigate the relationship of alcohol exposure during pregnancy and noncompaction cardiomyopathy (NCC) in offspring mice. Methods     Pregnant mice of ED3.5-ED18.5 were given 56% alcohol by gavage at a dose of 5 mL/kg. The ED19.5 mice were sacrificed, and the heart of the fetal mice was harvested. Transmission electron microscopy (filaments, mitochondria and sarcoplasmic reticulum) and HE staining were used to verify the changes of structure and ultrastructure of the obtained myocardial tissues. Echocardiography was used to evaluate the cardiac function and ventricular myometrium of the offspring mice after growing up. Results    Alcohol exposure during pregnancy caused the disorganized and dissolved myofilaments in the fetal mice. Some offspring mice (31.25%, 5/16) had NCC. The ratio of non-compacted myocardium to compact myocardium at the end of systole (N/C) was 2.49±0.6 in the offspring mice of the alcohol exposure group, significantly higher than that in the control offspring mice (0.62±0.23, t=10.397, P=0.000). The volume of heart was decreased in the offspring mice of the alcohol exposure group while the left ventricule was enlarged. Echocardiography showed cardiac dysfunction and thickened ventricular septal/left ventricular posterior walls in the grown-up mice of the exposure group. Conclusion     Large dose of alcohol exposure during pregnancy cause trabeculations and non-compaction in ventricular myocardium, and it might be one of causers for NCC in the offspring.


[1]MARON B J, TOWBIN J A, THIENE G, et al. Contemporary definitions and classification of the cardiomyopathies[J]. Circulation, 2006, 113(14):1807-1816. DOI: 10.1161/CIRCULATIONAHA.106.174287.
[2]ZHANG W, CHEN H, QU X, et al. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy(LVNC)[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(3): 144-156. DOI:10.1002/ajmg.c.31369.
[3]LIU X, LIU W L. Research progress of the left ventricular non-compaction cardiomyopathy[J]. Chinese Circulation Journal. 2016,31(2): 198-200. DOI:10.3969/j.issn.10003614.2016.02.023.
[4]SCHWEIZER P A, SCHROTER J, GREINER S, et al. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel[J]. J Am Coll Cardiol, 2014, 64(8): 757-767. DOI:10.1016/j.jacc.2014.06.1155.
[5]KARUNAMUNI G, GU S, DOUGHMAN Y Q, et al. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure[J]. Dev Dyn, 2015, 244(4): 607-618. DOI:10.1002/dvdy.24246.
[6]SARMAH S, MARRS J A. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid[J]. Dev Dyn, 2013, 242(10): 1184-1201. DOI:10.1002/dvdy.24015.
[7]JENNI R, OECHSLIN E, SCHNEIDER J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy[J]. Heart, 2001, 86(6): 666-671. DOI:10.1136/heart.86.6.666.
[8]PIGNATELLI R H, MCMAHON C J, DREYER W J, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy[J]. Circulation, 2003, 108(21): 2672-2678. DOI:10.1161/01.CIR.0000100664.10777.B8.
[9]ROSS C P, PERSAUD T V. Cardiovascular primordium of the rat embryo following in utero exposure to alcohol and caffeine[J]. Can J Cardiol, 1986, 2(3): 160-163.
[10]SERRANO M, HAN M, BRINEZ P, et al. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate[J]. Am J Obstet Gynecol, 2010, 203(1): 75-77. DOI:10.1016/j.ajog.2010.03.017.
[11]PAN B, ZHU J, LV T, et al. Alcohol consumption during gestation causes histone3 lysine9 hyperacetylation and an alternation of expression of heart development-related genes in mice[J]. Alcohol Clin Exp Res, 2014, 38(9): 2396-2402. DOI:10.1111/acer.12518.
[12]SAMSA L A, YANG B, LIU J. Embryonic cardiac chamber maturation: trabeculation, conduction, and cardiomyocyte proliferation[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(3): 157-168. DOI:10.1002/ajmg.c.31366.
[13]GUNDOGAN F, GILLIGAN J, QI W, et al. Dose effect of gestational ethanol exposure on placentation and fetal growth[J]. Placenta, 2015, 36(5): 523-530. DOI:10.1016/j.placenta.2015.02.010.
[14]PENG C, ZHANG W, ZHAO W, et al. Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts[J]. Biochimie, 2015, 113: 1-9. DOI:10.1016/j.biochi.2015.03.012.
[15]HAGHIGHI POODEH S, SALONURMI T, NAGY I, et al. Alcohol-induced premature permeability in mouse placenta-yolk sac barriers in vivo[J]. Placenta, 2012, 33(10): 866-873. DOI:10.1016/j.placenta.2012.07.008.
[16]FATKIN D, SEIDMAN C E, SEIDMAN J G. Genetics and disease of ventricular muscle[J]. Cold Spring Harb Perspect Med, 2014, 4(1): a021063. DOI:10.1101/cshperspect.a021063.
[17]NGUYEN V B, PROBYN M E, CAMPBELL F, et al. Low-dose maternal alcohol consumption: effects in the hearts of offspring in early life and adulthood[J]. Physiol Rep,2014, 2(7):e12087. DOI: 10.14814/phy2.12087.
[18]SEDMERA D, PEXIEDER T, VUILLEMIN M, et al. Developmental patterning of the myocardium[J]. Anat Rec, 2000,258(4): 319-337.
[19]ZHANG W, PENG C,ZHENG M, et al. Prenatal alcohol exposure causes the overexpression of DHAND and EHAND by increasing histone H3K14 acetylation in C57 BL/6 mice[J]. Toxicol Lett,2014, 228(3):140-146. DOI: 10.1016/j.toxlet.2014.05.011.
[20]NEILL C A. Genetics of congenital heart disease[J]. Annu Rev Med, 1973, 24: 61-66. DOI:10.1146/annurev.me.24.020173.000425.
[21]BRESCIA S T, ROSSANO J W, PIGNATELLI R, et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center[J]. Circulation, 2013, 127(22): 2202-2208. DOI:10.1161/CIRCULATIONAHA.113.002511.
[22]XU Y M. Clinical features of 123 cases children with noncompaction cardiomyopathy[J]. Chinese Journal of Practical Pediatrics. 2010, 25(6):472-77.DOI: 1005-2224(2010)06-047204.


Last Update: 2017-09-01