0
文章快速检索  
高级检索
动态脑电图对开颅术后预防性抗癫痫药物减停的临床研究
魏钰, 但炜, 陶园, 孙超, 谢延风, 石全红, 詹彦, 孙晓川     
400016 重庆,重庆医科大学附属第一医院神经外科
[摘要] 目的 回顾性分析神经外科开颅术后预防性抗癫痫药停药后癫痫发作与未发作患者的动态脑电图(ambulatory electroencephalogram,AEEG)特点,定性、定量分析AEEG不同波形与癫痫发作的关系,探讨AEEG对预防性抗癫痫药物减停的指导价值。方法 选取我院神经外科2010年至2017年颅脑疾病开颅术后预防性抗癫痫用药停药后癫痫发作的166例患者(发作组),同期按年龄、性别、病因、部位与发作组相近比例分层选取的方法选取166例未发作的患者(对照组),随访时间为1~8年,分析两组的脑电图资料。参照Hughes J R根据慢波、棘尖波量的差异制定的分类方法,分为R型(rare,少量型)、R-M型(rare-moderate, 少-中量型)、M型(moderate,中量型)、M-L型(moderate-large,中-大量型)、L型(large,大量型);NS型(no sharp waves,无棘尖波)、RS型(rare sharp waves,少量)、MS型(moderate sharp waves,中量)和LS型(large sharp waves,大量)。根据慢波出现方式分为3型:S型(scattered,散在性)、F型(focal,局灶性)、P型(paroxysmal同步阵发或暴发性)。分别比较两组停药前的脑电波差异。发作组根据再次服药后癫痫发作能否被控制分为控制组和未控制组,比较两组棘尖波数量之间的差异。结果 ① 发作组和对照组患者的脑电图类型构成比差异有统计学意义(P < 0.01)。从慢波数量上分析,发作组中以M型为主,对照组以R型为主,发作组中M、M-L、L型患者共91例(91/166,54.8%)显著高于对照组(14.5%);从慢波出现形式分析,发作组中以P型为主,对照组以S型为主,发作组中P型患者共107例(107/166,64.4%)显著高于对照组(34.3%);从棘尖波数量差异分析,发作组以MS型为主,对照组以RS型为主,发作组中MS、LS型患者共116例(116/166, 69.8%)显著高于对照组(22.9%)。M型、M-L型、L型及P型慢波,MS、LS型棘尖波为停药后癫痫发作的高危波形(OR>1)。②再次服药后,控制组中人数随棘尖波从RS型至LS型而逐渐减少,而未控制组人数逐渐增多。结论 M、M-L、L型慢波,P型慢波,MS、LS型棘尖波为神经外科开颅术后预防性应用抗癫痫药停药后癫痫发作的高危波形,AEEG对神经外科开颅手术患者预防性应用抗癫痫药物的减停有一定的指导价值。
[关键词] 颅脑手术     动态脑电图     癫痫    
Clinical study of ambulatory electroencephalography in reduction of prophylactic antiepileptic drugs after craniotomy
WEI Yu, DAN Wei, TAO Yuan, SUN Chao, XIE Yanfeng, SHI Quanhong, ZHAN Yan, SUN Xiaochuan     
Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
[Abstract] Objective To retrospectively analyze the characteristics of ambulatory electroencephalogram (AEEG) in postcraniotomy patients, with epileptic seizures and without seizures after reduction of preventive antiepileptic drugs, and qualitatively and quantitatively investigate the relationship between AEEG waveforms and seizures, in order to explore the guiding value of AEEG for the reduction of prophylactic antiepileptic drugs. Methods A total of 166 postcraniotomy patients with epileptic seizures after discontinuation of prophylactic antiepileptic drugs admitted in our department from 2010 to 2017 were recruited and subjected to seizure group in this study. Another 166 postcraniotomy patients without seizure who have the similar proportions in age, gender, etiology, location with the seizure group in our department during the same period served as non-epileptic seizure group. The 2 groups of patients were followed up for 1 to 8 years. Referring to the classification of Hughes J R, we divided them into following types: R type (rare), R-M type (rare-moderate), M type (moderate), M-L type (moderate-large), L type (large), NS type (non-sharp spike), RS type (rare sharp spike), MS type (moderate sharp spike), and LS type (large sharp spike). The waves were also assigned into S type (scattered), F type (focal), and P type (paroxysmal) according to the appearance of slow waves. The differences of AEEG waveforms were compared between the 2 groups before the discontinuation of prophylactic antiepileptic drugs. The seizure group was further divided into a controlled subgroup and a non-controlled subgroup according to whether the epilepsy be controlled after taking the drugs again. The number of spike-wave between the 2 subgroups was compared. Results ① Significant differences presented in AEEG type composition ratio between the patients in the seizure group and non-epilepsy seizure group (P < 0.01). The main type was M-type in the seizure group, and R-type in the non-epilepsy seizure group. There were more patients (91/166, 54.8%) with M, M-L and L types in the seizure group, significantly higher than the other group (14.5%). For the slow waves, the main type was P-type in the seizure group and S-type in the control, and there were 107 patients (107/166, 64.4%) with P type in the former group, significantly higher than the other group (34.3%). For the number of spike-waves. The former group mostly had MS-type, while the control mainly had RS-type, and the patients with MS- and LS-type (116/166, 69.8%) were larger than those in the control group (22.9%). The high-risk waveforms of seizures after discontinuation of prophylactic antiepileptic drugs were slow waves of M, M-L, L, P types and spike-waves of MS and LS types (OR>1). ②After taking the drugs again, the number of patients in the control group were gradually decreased from RS-type to LS-type, and the numbers in the uncontrolled group were gradually increased. Conclusion The high-risk waveforms for postcraniotomy seizures after discontinuation of anti-epileptic drugs are slow waves of M, M-L, L and P types and spike waves of MS and LS types. AEEG is of certain guiding value in the prevention and treatment of antiepileptic drugs in patients undergoing neurosurgical craniotomy.
[Key words] craniocerebral operations     ambulatory electroencephalogram     epilepsy    

癫痫发作是颅脑疾病较常见的伴随症状,也是神经外科开颅术后的常见并发症。根据2012年中国抗癫痫协会主持发表的《颅脑疾病手术后抗癫痫药物应用的专家共识》,预防性应用抗癫痫药物通常应当在手术后2周后逐渐停止使用[1]。但是临床观察发现,部分患者停药后出现无明显诱因的癫痫发作,甚至多次发作。众所周知,脑电图(electroencephalogram,EEG)是癫痫诊疗过程中最重要、最基本的检查方法,但EEG是否可以指导预防性抗癫痫药物的减停目前仍有争议。以往报道主要用常规脑电图(regular electroencephalogram,REEG)作为研究工具,由于REEG记录时间短,一般30 min左右,且无明显睡眠时相,目前文献报道对癫痫患者诊断阳性率仅为5~31%[2]。而AEEG检测时间长达24 h,并可以监测各种状态脑电信号,可将癫痫的诊断率提高到80~90%[3]。本文拟回顾性对比分析我科近七年来术后预防性抗癫痫药物停药后癫痫发作与未发作患者停药前的AEEG波形,探讨AEEG对术后预防性抗癫痫药物停用后癫痫发作的指导价值,以期为临床提供电生理依据。

1 对象和方法 1.1 临床资料

本研究已得到重庆医科大学附属第一医院伦理委员会批准(2018)。所有患者签署知情同意书。

纳入标准:①影像学资料证明颅内有明确病灶并已行开颅手术治疗;②术前及术后围手术期均未发过癫痫的患者;③病变部位主要位于额区、颞区、顶区;④病因为幕上肿瘤、外伤、血管疾病;⑤停药前及停药后行过动态脑电图检查。排除标准:①原发性癫痫或难治性癫痫;②术后出现颅内感染、再次出血行二次手术等严重并发症者;③脑电图干扰较大,影响分析者;④随访期间出现肿瘤或其他疾病的复发。

从2010年1月至2017年1月行过AEEG检查的9 497例记录中按纳入排除标准筛选出166例预防性用药停药后癫痫发作的患者:年龄17~84岁;男性110例,女性56例;幕上肿瘤79例,外伤32例,血管疾病55例;额区68例,颞区39例,顶区59例。同期按年龄、性别、病因、部位与发作组相近比例分层选取的方法选取了166例停药后未发作的患者:年龄14~65岁;男性104例,女性62例;幕上肿瘤71例,外伤34例,血管疾病61;额区63例,颞区45例,顶区58例。

1.2 分组

根据停药后有无癫痫发作,分为发作组和对照组;根据发作组患者再次服药后癫痫发作是否被控制,分为控制组和未控制组。

1.3 AEEG记录和分析

AEEG监测采用深圳博英MB动态脑电图工作站,电极安置采用估计国际标准10-20系统:Fp1/Fp2、F3/F4、C3/C4、P3/P4、O1/O2、F7/F8、T3/T4、T5/T6 (根据需要加用Sp1/Sp2)。采用乳突参考电极记录,分析中根据需要切换其他导联方式。脑电图分析参数设置:0.5~30 Hz,走纸速度30 mm/s,灵敏度7.5 μV/mm (根据波幅高低予以调整)。

AEEG波形分析:选取患者清醒安静闭目状态(即α活动存在时)下分析慢波,在其数量最集中的地方,选取5 min的脑电图。根据慢波数量差异分为:R型(少量型),θ波数量<25%;R-M型(少-中量型),25%<θ波数量<50%;M型(中量型),θ波数量>50%或δ波数量<20%;M-L型(中-大量型),20%<δ波数量<50%;L型(大量型),δ波数量>50%。若θ波与δ波同时存在,以δ波为主;据慢波的出现方式分为:S型(散在性),散在出现于背景中,普遍性慢波异常;F型(局灶性),异常波主要位于同侧相邻1~3个导联;P型(同步阵发或暴发性),双侧或单侧各导联同步出现,波幅明显高于背景1倍及以上。如果同时出现多种形式,以所占比重最多的形式为主。选取患者睡眠状态下,从α活动解体到顶尖波及睡梭波出现,即NREMⅠ~Ⅱ期分析棘尖波,在其数量最集中的地方,据棘尖波量的差异分为:NS(无棘尖波型),20 min内未见明显棘尖波;RS(少量型),20 min内少于4个棘尖波;MS(中量型),20 min内多于4个,而10 s内小于1个棘尖波;LS(大量型),10 s内多于1个棘尖波[4]

对脑电图波形分析及类型判定由两名长期从事神经电生理的专业人员共同完成,若存在争议,则共同讨论决定。

1.4 统计学分析

采用SPSS 20.0统计软件,计量资料行两独立样本t检验,计数资料行列联表χ2检验。以P<0.05为差异具有统计学意义。

2 结果 2.1 发作组和对照组临床资料的一致性分析

发作组166例患者和对照组166例患者年龄、性别、病因、部位的分布见表 1,其年龄、性别、病因、部位的差异无统计学意义,具有可比性(P>0.05)。

表 1 发作组与对照组患者年龄、性别、病因、部位的差异(n=166)
组别 年龄/岁(x±s) 性别/例 病因/例 部位/例
肿瘤 外伤 血管病 额区 颞区 顶区
发作组 17~84(59±13.58) 110 56 79 32 55 68 39 59
对照组 14~65(39.5±13.31) 104 62 71 34 61 63 45 58
P 0.459 0.612 0.671 0.731

2.2 各组中脑电图波形与癫痫的关系

2.2.1 脑电图波形在发作组和对照组之间的差异

慢波数量和出现方式在发作组和对照组之间的差异行列联表χ2检验,结果显示:两组患者脑电图类型构成比差异存在统计学意义(χ2=64.1,P<0.01),发作组以M型、P型慢波为多,对照组以R型、S型慢波为多,发作组中M、M-L、L型患者共91例(91/166,54.8%)、P型患者107例(107/166,64.4%)显著高于对照组(14.5% vs 34.3%)。对不同波型进行OR计算,结果显示M、M-L、L型和P型慢波有较高危险性(OR>1,表 2)。

表 2 慢波在发作组和对照组之间的差异[例(%), n=166]
组别 数量 出现方式
R型 R-M型 M型 M-L型 L型 S型 F型 P型
发作组 33(19.9) 42(25.3) 58(34.9) 22(13.3) 11(6.6) 34(20.5) 25(15.1) 107(64.4)
对照组 82(49.4) 60(36.1) 18(10.8) 5(3.1) 1(0.6) 79(47.6) 30(18.1) 57(34.3)
OR 0.25 0.60 4.42 4.92 1.06 0.28 0.80 3.47
P值(χ2) <0.001(64.1) <0.001(33.6)

棘尖波数量在发作组和对照组之间的差异行列联表卡方检验,结果显示,两组患者脑电图类型构成比差异存在统计学意义(P<0.01),发作组以MS为多,对照组以RS为多,发作组中MS、LS型棘尖波患者共116例(116/166,69.8%)显著高于对照组(22.9%)。对不同波型进行OR计算,结果显示MS、LS有较高危险性(OR>1,表 3)。

表 3 棘尖波数量在发作组和对照组之间的差异[例(%), n=166]
组别 NS RS MS LS
发作组 8(4.8) 42(25.4) 99(59.6) 17(10.2)
对照组 52(31.3) 76(45.8) 37(22.3) 1(0.6)
OR 0.05 0.40 5.15 18.8

2.2.2 脑电图波形在控制组和未控制组之间的差异

在发作组中根据再次用药后癫痫是否控制分为控制组和未控制组,比较两组棘尖波数量的变化。结果显示:随棘尖波数量从RS增加到LS,控制组中人数逐渐减少,而未控制组人数有增加(表 4)。

表 4 癫痫控制组与未控制组棘尖波数量比较
组别 NS RS MS LS
控制组 100 90 40 29
未控制组 0 10 60 71

3 讨论

癫痫发作是神经外科开颅术后常见的并发症,有研究报道,在颅脑外科手术后,3%~40%的患者出现癫痫发作[1],AEEG是癫痫诊疗过程中最重要、最基本的检查方法。局灶性慢波和局灶性棘尖波是两种最常见的脑电图异常波型,前者反映非特异性的神经功能损害而后者更倾向于是一种特异性的癫痫样放电,常常与癫痫发作有关。有研究报道停药前脑电图的异常是停药后癫痫复发的危险因素[22-25],但也有学者认为脑电图并不是停药的指标[26-29],但这大都是对于儿童癫痫或难治性癫痫而言,对神经外科术后的患者研究较少,且慢波、棘尖波和癫痫发作之间的关系鲜有报道。它们与抗癫痫药物的减停是否有关?其量的差异和发作频率是否有关?尚需进一步探明。

本研究从近万例脑电图记录中筛选出166例停药后癫痫发作的患者,同期分层选取166例未发作的患者作为对照组,研究发现发作组和对照组在年龄、性别、病因、部位上差异没有统计学意义。发作组和对照组患者的脑电图类型构成比存在显著差异。发作组中以M型、P型慢波、MS型棘尖波为主,对照组中以R型、S型慢波、RS型棘尖波为主,发作组中M、M-L、L型患者共91例(91/166,54.8%)、P型患者107例(107/166,64.4%)、MS、LS型棘尖波患者共116例(116/166,69.8%)显著高于对照组(14.5%,34.3%,22.9%);M型、M-L型、L型及P型慢波,MS、LS型棘尖波为停药后癫痫发作的高危波形(OR>1)。

本研究选取的都是神经外科开颅术后的患者,由于术中对脑组织的牵拉、双极电凝造成静脉回流障碍等,导致脑局部出现缺血、缺氧、水肿等病理生理改变,脑功能往往有局灶性、结构性损害,而慢波代表非特异性的神经元损害,故无论发作组还是对照组,都有不同程度的慢波异常。研究报道,对大脑造成的损害越重,慢波异常程度越高,放电也会越多[2],而背景慢波增多使棘尖波更易诱发癫痫的临床发作,即慢波可以提高癫痫的易感性[5-6],这可能与慢波降低癫痫发作阈值,使痫样放电更易传导有关,这与本研究发作组中M、M-L、L型慢波比例显著高于对照组,是癫痫发作的高危波型结果一致。

除了慢波数量在两组中的差异,慢波的出现方式也有统计学差异,发作组中P型患者共107例(64.4%)显著高于对照组(34.3%),为停药后癫痫发作的高危波形(OR>1)。MASTROPAOLO等[7]对于癫痫患者复发率与脑电图的研究中发现,脑电图正常患者的复发率为18.8%,而脑电图表现为阵发性异常的患者癫痫复发率为23.3%。与本文研究结果相近。另有研究报道,阵发性活动,尤其是额叶阵发性活动预示着更高的癫痫发作率[7-12]。也有研究报道,当各种原因导致神经元受损后,皮层神经元产生的异常电活动,不仅可以向周围邻近组织传播,也可以通过刺激丘脑的非特异性核团,产生短暂的兴奋性突触后电位(EPSP),引起整个神经元网络的同步爆发[13-14, 30]。这种通过皮质-丘脑环路引起的反复振荡可能是暴发性慢活动产生的基础。与本研究得出的P型慢波为癫痫发作的高危波形的结果一致。

本研究中,发作组棘尖波出现率(95.2%)明显高于对照组(68.7%)。既往关于棘尖波和癫痫形成的机理研究中发现,不管在各种动物模型[15-17],还是在颞叶癫痫[18-19]的患者中,自发性癫痫发作之前常常会出现间期棘波。且CHAUVI常会出现间期棘RE等[20]认为,间期棘波的动态变化可作为预测癫痫发作的生物学标志。

关于棘尖波数量和临床发作的关系,本研究中,再次服药后,控制组中随棘尖波由LS型至RS型,人数逐渐增多,而未控制组人数逐渐减少。不管是把棘尖波数量作为观察指标还是把癫痫发作作为观察对象,大量棘尖波总是和未控制组并行。在关于颞叶内侧癫痫和棘尖波数量的临床研究中发现,棘尖波与癫痫发作常常相互依存,棘尖波量越多,癫痫发作越频繁,海马萎缩就越重,手术预后也就越差[18-19, 21]

本研究是一篇回顾性研究,未对疾病病因进行细分,且为半定量性研究。下一步可用定量脑电图的方法进一步标定脑电图波形,以期更准确地指导临床用药与减停。

综上所述,神经外科开颅术后患者AEEG中出现M、M-L、L型、P型慢波、MS、LS型棘尖波与停药后癫痫发作密切相关,是癫痫发作的高危波形,对癫痫发生有一定的预测价值,因此停药前应该复查AEEG,以防止停药后癫痫发作。

参考文献
[1] 中国抗癫痫协会专家组. 颅脑疾病手术后抗癫痫药物应用的专家共识(试行)[J]. 中华神经外科杂志, 2012, 28(7): 751–754.
Anti-epilepsy Association Expert Group. Expert consensus on the application of antiepileptic drugs after surgery for craniocerebral diseases (Trial)[J]. Chin J Neurosurg, 2012, 28(7): 751–754. DOI:10.3760/cma.j.issn.1001-2346.2012.07.034
[2] 黄永光, 曾惠良. 脑卒中后癫痫的临床、影像学特点与预后分析[J]. 影像诊断与介入放射学, 2003, 12(3): 142–143.
HUANG Y G, ZENG H L, et al. Analysis of clinical & imaging characters and prognosis in patients with epilepsy after stroke[J]. J Diagn Imaging Interv Radiol, 2003, 12(3): 142–143. DOI:10.3969/j.issn.1005-8001.2003.03.005
[3] 王学峰, 肖波, 孙红斌. 难治性癫痫[M]. 上海: 上海科学技术出版社, 2002: 142-144.
WANG X F, XIAO B, SUN H B, et al. Refractory epilepsy[M]. Shanghai: Shanghai Science and Technology Press, 2002: 142-144.
[4] HUGHES J R, WANG C C. The relationship between slow and sharp waves (spikes) and also clinical seizures[J]. Clin Electroencephalogr, 2002, 33(4): 165–170. DOI:10.1177/155005940203300406
[5] CSERCSA R, DOMBOVÁRI B, FABÓ D, et al. Laminar analysis of slow wave activity in humans[J]. Brain, 2010, 133(9): 2814–2829. DOI:10.1093/brain/awq169
[6] 方升, 但炜, 谢延风, 等. 双侧同步节律性慢波在幕上肿瘤患者继发癫痫中的易感性研究[J]. 第三军医大学学报, 2011, 33(20): 2191–2194.
FANG S, DAN W, XIE Y F, et al. Susceptibility of bilateral synchronous rhythmic slow wave in secondary epilepsy in patients with intracranial tumor[J]. J Third Mil Med Univ, 2011, 33(20): 2191–2194.
[7] MASTROPAOLO C, TONDI M, CARBONI F, et al. Prognosis after therapy discontinuation in children with epilepsy[J]. Eur Neurol, 1992, 32(3): 141–145. DOI:10.1159/000116811
[8] MATRICARDI M, BRINCIOTTI M, BENEDETTI P. Outcome after discontinuation of antiepileptic drug therapy in children with epilepsy[J]. Epilepsia, 1989, 30(5): 582–589. DOI:10.1111/j.1528-1157.1989.tb05476.x
[9] TANG L, XIAO Z. Can electroencephalograms provide guidance for the withdrawal of antiepileptic drugs: A meta-analysis[J]. Clin Neurophysiol, 2017, 128(2): 297–302. DOI:10.1016/j.clinph.2016.11.024
[10] TREMBLAY G F. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (2nd Ed.)[J]. Neurology, 1989, 39(7): 1008–1008. DOI:10.1212/wnl.39.7.1008
[11] KANEMURA H, HATA S, AOYAGI K, et al. Serial changes of prefrontal lobe growth in the patients with benign childhood epilepsy with centrotemporal spikes presenting with cognitive impairments/behavioral problems[J]. Brain Dev, 2011, 33(2): 106–113. DOI:10.1016/j.braindev.2010.03.005
[12] KANEMURA H, MIZOROGI S, AOYAGI K, et al. EEG characteristics predict subsequent epilepsy in children with febrile seizure[J]. Brain Dev, 2012, 34(4): 302–307. DOI:10.1016/j.braindev.2011.07.007
[13] PAMPIGLIONE G. Current practice of clinical electroencephalography[J]. J Neurol, Neurosurg Psychia, 1980, 43(6): 559–559. DOI:10.1136/jnnp.43.6.559
[14] MCCORMICK D A, CONTRERAS D. On the cellular and network bases of epileptic seizures[J]. Annu Rev Physiol, 2001, 63: 815–846. DOI:10.1146/annurev.physiol.63.1.815
[15] DUBE C M, RAVIZZA T, HAMAMURA M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers[J]. J Neurosci, 2010, 30(22): 7484–7494. DOI:10.1523/jneurosci.0551-10.2010
[16] LÉVESQUE M, AVOLI M. The kainic acid model of temporal lobe epilepsy[J]. Neurosci Biobehav Rev, 2013, 37(10 Pt 2): 2887–2899. DOI:10.1016/j.neubiorev.2013.10.011
[17] CURIA G, LONGO D, BIAGINI G, et al. The pilocarpine model of temporal lobe epilepsy[J]. J Neurosci Methods, 2008, 172(2): 143–157. DOI:10.1016/j.jneumeth.2008.04.019
[18] KRENDL R, LURGER S, BAUMGARTNER C. Absolute spike frequency predicts surgical outcome in TLE with unilateral hippocampal atrophy[J]. Neurology, 2008, 71(6): 413–418. DOI:10.1212/01.wnl.0000310775.87331.90
[19] ROSATI A, AGHAKHANI Y, BERNASCONI A, et al. Intractable temporal lobe epilepsy with rare spikes is less severe than with frequent spikes[J]. Neurology, 2003, 60(8): 1290–1295. DOI:10.1212/01.wnl.0000058761.12715.0e
[20] CHAUVIÈRE L, DOUBLET T, GHESTEM A, et al. Changes in interictal spike features precede the onset of temporal lobe epilepsy[J]. Ann Neurol, 2012, 71(6): 805–814. DOI:10.1002/ana.23549
[21] GONCHAROVA Ⅱ, ALKAWADRI R, GASPARD N, et al. The relationship between seizures, interictal spikes and antiepileptic drugs[J]. Clin Neurophysiol, 2016, 127(9): 3180–3186. DOI:10.1016/j.clinph.2016.05.014
[22] BRITTON J W. Significance of the EEG and epileptiform abnormalities in antiepileptic drug discontinuance[J]. J Clin Neurophysiol, 2010, 27(4): 249–254. DOI:10.1097/WNP.0b013e3181eaa620
[23] PAVLOVIĆ M, JOVIĆ N, PEKMEZOVIĆ T. Withdrawal of antiepileptic drugs in young patients with cryptogenic focal epilepsies[J]. Seizure, 2012, 21(6): 431–436. DOI:10.1016/j.seizure.2012.04.008
[24] SKOW A, DOUGLAS I, SMEETH L. The association between Parkinson's disease and anti-epilepsy drug carbamazepine: a case-control study using the UK General Practice Research Database[J]. Br J Clin Pharmacol, 2013, 76(5): 816–822. DOI:10.1111/bcp.12100
[25] LI W, SI Y, ZOU XM, et al. Prospective study on the withdrawal and reinstitution of antiepileptic drugs among seizure-free patients in west China[J]. J Clin Neurosci, 2014, 21(6): 997–1001. DOI:10.1016/j.jocn.2013.09.019
[26] VERROTTI A, D'EGIDIO C, AGOSTINELLI S, et al. Antiepileptic drug withdrawal in childhood epilepsy: what are the risk factors associated with seizure relapse[J]. Eur J Paediatr Neurol, 2012, 16(6): 599–604. DOI:10.1016/j.ejpn.2012.02.002
[27] PAVLOVI M, JOVIĆ N, PEKMEZOVIĆ T. Antiepileptic drugs withdrawal in patients with idiopathic generalized epilepsy[J]. Seizure, 2011, 20(7): 520–525. DOI:10.1016/j.seizure.2011.03.007
[28] SU L, DI Q, YU N, et al. Predictors for relapse after antiepileptic drug withdrawal in seizure-free patients with epilepsy[J]. J Clin Neurosci, 2013, 20(6): 790–794. DOI:10.1016/j.jocn.2012.07.010
[29] OLMEZ A, ARSLAN U, TURANLI G, et al. Risk of recurrence after drug withdrawal in childhood epilepsy[J]. Seizure, 2009, 18(4): 251–256. DOI:10.1016/j.seizure.2008.10.011
[30] 廖兴甫, 但炜, 孙超, 等. 头皮脑电图波型对动脉瘤性蛛网膜下腔出血继发癫痫的预测价值[J]. 第三军医大学学报, 2018, 40(15): 1383–1388.
LIAO X F, DAN W, SUN C, et al. Predictive value of scalp electroencephalogram patterns for secondary epilepsy after aneurysmal subarachnoid hemorrhage[J]. J Third Mil Med univ, 2018, 40(15): 1383–1388. DOI:10.16016/j.1000-5404.201712273
http://dx.doi.org/10.16016/j.1000-5404.201810089
中国人民解放军总政治部、国家科技部及国家新闻出版署批准,
由第三军医大学主管、主办

文章信息

魏钰, 但炜, 陶园, 孙超, 谢延风, 石全红, 詹彦, 孙晓川.
WEI Yu, DAN Wei, TAO Yuan, SUN Chao, XIE Yanfeng, SHI Quanhong, ZHAN Yan, SUN Xiaochuan.
动态脑电图对开颅术后预防性抗癫痫药物减停的临床研究
Clinical study of ambulatory electroencephalography in reduction of prophylactic antiepileptic drugs after craniotomy
第三军医大学学报, 2019, 41(5): 461-466
Journal of Third Military Medical University, 2019, 41(5): 461-466
http://dx.doi.org/10.16016/j.1000-5404.201810089

文章历史

收稿: 2018-10-16
修回: 2018-12-19

相关文章

工作空间