0
文章快速检索  
高级检索
计算机辅助+3D打印技术在婴儿严重Pierre-Robin综合征下颌骨牵引成骨术中的应用
刘燕, 邱林, 傅跃先, 袁心刚, 肖军, 李天武, 毛小波, 丁雄辉, 梅爱莲     
400014 重庆,重庆医科大学附属儿童医院烧伤整形科,儿童发育疾病研究教育部重点实验室,儿童发育重大疾病国家国际科技合作基地,儿科学重庆市重点实验室
[摘要] 目的 探索婴儿严重Pierre-Robin综合征(Pierre-Robin syndrome, PRS)下颌骨牵引成骨术(mandibular distraction osteogenesis, MDO)的精准操作方法。方法 选取本院2016-2017年收治的严重PRS婴儿10例,男女各5例,术前计算机软件模拟截骨及延长,并3D打印头模验证计算机模拟结果,3D打印个体化截骨模块,预弯延长器,术中指导截骨及安放延长器。术后5 d,以每日1.2 mm的速度进行骨延长治疗,延长至轻度反颌。记录手术时间及出血量、延长长度、术后拔气管插管时间、进食改善情况,延长结束后复查CT,明确舌根至咽后壁距离,并做多导睡眠图(polysomnogram, PSG)测量呼吸暂停低通气指数(apnea hyponea index, AHI)。3个月后,再次手术取出延长器。结果 10例患儿均顺利完成治疗。第1次手术时间为(1.72±0.15)h;出血量(16±3)mL;20侧下颌骨延长长度为(11.11±1.18)mm;术后拔出气管插管时间为(6.10±0.74)d;拔管后开始经口喂养,7 d后8例患儿每日进奶量为(374.0±65.2)mL,2例仍需鼻饲喂养;延长结束后舌根至咽后壁距离为(7.17±0.70)mm;PSG示AHI(1.5±0.6)次。所有患儿牵引区成骨良好;无口角偏斜等面神经损伤症状。面下部后缩显著改善。结论 术前计算机辅助+3D打印技术指导截骨、牵引,能提高严重PRS婴儿MDO中操作的精准性,缩短手术时间,减少出血,并能避免损伤重要解剖结构,是严重PRS婴儿MDO的精准操作方法。
[关键词] 计算机辅助     3D打印     下颌骨牵引成骨术     Pierre-Robin综合征     婴儿    
Application of computer aided simulation and three-dimensional printing in mandibular distraction osteogenesis for serious Pierre-Robin syndrome in infants
LIU Yan, QIU Lin, FU Yuexian, YUAN Xingang, XIAO Jun, LI Tianwu, MAO Xiaobo, DING Xionghui, MEI Ailian     
Department of Burns and Plastic Surgery, Key Laboratory of Child Development and Disorders of Ministry of Education, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
[Abstract] Objective To establish a high-precision surgical approach for mandibular distraction osteogenesis (MDO) for treatment of serious Pierre-Robin syndrome (PRS) in infants. Methods Ten infants with serious PRS were enrolled in this study. Before the operation, osteotomy and distraction were simulated using computer software, followed by three-dimensional (3D) printing of the head model for verifying the simulation results. After the verification, the individualized osteotomy template and bended distractor were constructed using a 3D printer to assist in subsequent osteotomy and fixation of the distractor. Five days after the operation, the distraction started at a daily rate of 1.2 mm until mild anterior crossbite occurred. The operative time, blood loss, distracted length, postoperative tracheal intubation time, and improvement of eating behavior after the operation were recorded. After the distraction, all the infants underwent CT examination for measurement of the distance from the tongue root to the posterior pharyngeal wall; they also received polysomnogram (PSG) examination to determine the apnea hyponea index (AHI). The distractors were removed surgically at 3 months after the operation. Results The operations were completed successfully in all the 10 infants. The mean operative time of the first operation was 1.72±0.15 h with a mean blood loss of 16±3 mL; the mandibular distraction distance on 20 sides averaged 11.11±1.18 mm. The postoperative endotracheal intubation time was 6.10±0.74 d. After the extubation, 8 infants started oral feeding, and their daily milk intake reached 374.0±65.2 mL 7 d later while the other 2 infants still required nasal feeding. After the distraction, the mean distance from the tongue root to the posterior pharyngeal wall was 7.17±0.70 mm. PSG showed AHI of 1.5±0.6 in these infants. All the infants had good osteogenesis in the distraction area without symptoms of facial nerve injury and showed significant improvement in the lower part of the face. Conclusion For infants with serious PRS, computer aided simulation combined with 3D printing for guiding osteotomy and distraction not only improves the surgical precision of MDO and shortens the operative time, but also avoids damages to important anatomical structures during the surgery.
[Key words] computer aided simulation     3D printing     mandibular distraction orthogenesis     Pierre-Robin syndrome     infants    

Pierre Robin综合征(Pierre-Robin syndrome, PRS)又称小颌畸形综合征,以新生儿、婴儿时期的小下颌、下颌后缩、舌后坠、腭裂引起的吸气性呼吸困难、喂养困难为特征[1],其发病率1/20 000~1/8 500[2], 严重者因上气道梗阻导致缺氧而引发一系列并发症,如脑损伤、肺水肿、肺心病及发育停滞[3],甚至死亡[4],死亡率为3.6%~21%[5]。故对于严重PRS患儿尽早有效的治疗是挽救其生命及减少严重并发症、提高生存质量的保证。目前对于严重PRS患儿,下颌骨牵引成骨术(mandibular distraction osteogenesis, MDO)是被广泛认可的有效治疗方法。牵引成骨术完善的术前设计是保证治疗效果的关键,其中最重要的是牵引方向的确定[6-7]。牵引方向由截骨线及牵引器安放的位置决定,故术前精准设计截骨线及延长器安放位置是决定手术效果的关键。本研究对2016-2017年在我院治疗的10例严重PRS患儿,术前利用计算机设计截骨线及模拟延长过程+3D打印头模实体验证截骨、预弯延长器、安放延长器、牵引过程,两者吻合后,3D打印个体化截骨及牵引器安放模块,用于术中指导截骨及安放延长器,该方法取得稳定的治疗效果,现报告如下。

1 资料与方法 1.1 临床资料

选取重庆医科大学附属儿童医院烧伤整形科2016-2017年诊治的PRS ColeⅢ级[8]患儿10例,其中男性5例,女性5例。患儿均为出生即刻诊断为PRS,生后因严重上呼吸道梗阻在出生医院立即气管插管后转来我院。入我院年龄1.5~4 d,因在我院新生儿科保守治疗无效、无法拔出气管插管,家属强烈要求手术治疗而转入我科,我科对以上患儿进行双侧MDO治疗。手术年龄8~78(37.5±16.6)d。术前CT示下颌骨后缩,舌根后坠, 舌根、气管插管(内径3~3.5 mm)、咽后壁三者无缝紧贴,舌骨大角至第1颈椎前缘距离/腭板后缘至第1颈椎前缘距离 < 1。

1.2 方法

所有患儿术前进行面颌三维螺旋CT(美国GE公司生产的LightSpeed VCT)薄层(0.625 mm)扫描+三维重建,计算机上利用mimics软件进行截骨线设计、延长器安放、模拟牵引至轻度的Ⅲ类错颌畸形[9](图 1),并3D打印头模。在头模上复制计算机软件模拟的截骨、牵引器安放、牵引过程(图 2AB),进一步验证计算机模拟的正确性后,3D打印个体化截骨及牵引器安放模块(图 2C),并预弯延长器(图 2D),用于术中指导手术。

A:计算机设计截骨线;B:计算机模拟截骨及延长 图 1 计算机三维重建模型

A: 3D头模截骨及延长器安置; B: 3D头模模拟延长; C: 3D打印个体化截骨模块; D:个体化预弯延长器 图 2 3D模型大体观察

手术在气管插管全麻下进行,于下颌角及下颌体下缘一横指处做与下颌体平行的长2~2.5 cm的横行切口,切开皮肤、分离皮下、颈阔肌、部分咬肌,暴露下颌角及部分下颌体,切开骨膜,剥离骨膜,将术前设计的个体化模板放入该区,标记截骨线、钛钉固定的位置及下牙槽神经血管束的位置(图 3A)。沿截骨线用超声骨刀全层截开下颌体牙槽嵴顶及下颌下缘骨质,牙槽神经血管束区域仅截开颊侧骨皮质。以薄骨凿凿开截骨线舌侧残余骨皮质连接,充分离断下颌骨体。安放预弯的下颌骨牵引器(浙江宁波磁北公司生产),并按标志进行钛钉固定(图 3B)。记录手术持续时间及出血情况,术后5 d的间歇期后进行常规的牵引成骨治疗,速度为1.2 mm/d,分2次完成。延长至轻度的Ⅲ类错颌畸形后停止延长。记录延长天数及延长距离;延长结束后摄下颌骨CT,测量延长距离、舌根到咽后壁距离,计算舌骨大角至第1颈椎前缘距离/腭板后缘至第1颈椎前缘距离比值;记录拔出气管插管时间、拔管后氧饱和度值、经口喂养情况。做PSG测量AHI。延长结束3个月截骨区域骨愈合后二次手术拆除牵引器。

A:术中截骨模块指导截骨; B:术中延长器安置 图 3 术中截骨及延长器安置

2 结果

10例患儿均顺利完成下颌骨牵引成骨治疗。第1次手术时间1.5~2(1.72±0.15)h;出血量10~20(16±3)mL。术后均于第6天开始延长,每日延长2次,每次0.6 mm,延长天数为8~12(9.40±1.08)d。延长结束后摄下颌骨CT,测量延长距离,10例20侧延长距离为9.6~14.4(11.11±1.18)mm(其中5例两侧延长距离出现少许差异,为0.2~1.2 mm,考虑为延长器回缩所致);舌根到咽后壁距离6~8.8(7.17±0.70)mm;术后舌骨大角至第1颈椎前缘距离/腭板后缘至第1颈椎前缘距离≥1。10例患儿延长5~8(6.10± 0.74)d后顺利拔出气管插管,改为面罩给氧,氧饱和度为94%~100%;1~4 d后停止用氧,自然呼吸下氧饱和度为93%~100%。拔管后经口喂养,7 d后8例患儿能每日经口进食奶240~480(374.0±65.2)mL,2例不能经口进食仍需要鼻饲喂养。术后多导睡眠图PSG示呼吸暂停低通气指数AHI 1~3(1.5±0.6)次。面部下1/3明显延长,下颌骨畸形得到显著改善(图 4)。

A:术前正位; B:术前侧位; C:术后正位; D:术后侧位 图 4 PRS患儿术前、术后面部情况比较

牵引结束后经过3个月的稳定期骨愈合后二期手术拆除牵引器,所有患者的牵引成骨区成骨良好,均未出现成骨不良、牵引故障等严重并发症。拆除牵引器后随访6~12个月,10例患儿均呼吸正常,经口进食可,体质量增加正常,CT示下颌骨后缩矫正满意(图 5)。

A:术前CT正位; B:术前CT侧位; C:术后CT正位; D:术后CT侧位 图 5 PRS患儿术前和术后CT表现

3 讨论

MDO是一种公认的治疗严重PRS的有效方法,通过延长下颌骨,而非骨移植,来治疗下颌骨后缩,并增加咽部气道体积、改善呼吸,使大多数患有严重PRS的新生儿和婴儿成功避免了气管切开术[10]。MDO被认为是近年来治疗PRS婴幼儿安全可行的治疗方法[11],并被认为是治疗严重气道阻塞的PRS患者的常规治疗方法[12], 尤其对于保守治疗无效、不宜行唇舌粘连术及气管切开术或效果不满意的这部分患儿,MDO更是一个常规、有效的替代治疗方法[13]。研究发现MDO还能降低腭裂宽度,延长软腭,将U型转变为一个更有利的V型裂口,有利于后期腭裂修补术及术后语音改善[14]

传统的MDO术前设计是通过影像学资料与临床检查的结果来定位截骨线、牵引器安放的位置及牵引方向,精确度较差,也无法预测牵引结束的时间及颌骨形态[15]。手术过程中两侧截骨线可能无法达到完全精准对称,且受手术切口及周围组织影响,不能暴露大段下颌骨,故牵引器的弧度调整及安放也无法精确。手术操作过程中需反复调整延长器弧度,增加术中操作时间,增加出血量,且仍不能达到最佳服帖效果,术后两侧延长不对称较为常见,且术中不能准确预见下齿槽神经血管走形,术中较易损伤下齿槽神经血管;术后由于固定位置不稳定性,也较易发生钛钉脱落、延长障碍、不对称等并发症。随着计算机软件在医学领域的广泛、深入应用,牵引成骨术的外科手术过程逐渐建立在计算机模拟的基础上,从而使治疗的个性化得以实现[16]。随着3D打印技术在临床的逐渐广泛应用,使得颌面部术前设计及手术模拟变得更加直观、立体[17-18]

为提高手术精准性,我科术前利用计算机软件设计截骨及模拟延长过程,并3D打印颌部立体准确外观验证该截骨线设计、延长器安放与延长过程,两者吻合后打印个体化截骨及延长器安放模块,并预弯延长器,用于术中指导截骨及延长器安放。该方法可有效减少术中直视范围、缩短手术切口,减少组织剥离损伤,截骨及安放延长器更精准、快捷,减少血管神经损伤。我科采用该方法治疗严重PRS婴儿10例,取得良好效果,手术时间短、术中出血少,较传统MDO手术时间缩短1/4~1/3,出血量减少1/4,10例呼吸均得到明显改善,平均延长6.1 d后均能拔气管插管,自然呼吸下氧饱和度维持93%以上,进食80%得到明显改善。多导睡眠图PSG示AHI(1.5±0.6)次。术后无面神经损伤及延长器脱落、两侧面部不对称等并发症表现,较传统MDO手术,大大减少了并发症的发生。3个月后所有患儿牵引区均未出现骨不连,成骨良好。面部下1/3明显延长,下颌骨后缩得到显著改善,顺利取出延长器。术后随访6~12个月10例患儿均呼吸正常,经口进食可,体质量增加正常,CT示下颌骨后缩矫正满意,家长对治疗效果非常满意。故我们认为术前计算机辅助+3D打印模拟截骨、牵引,并制作个体化截骨及延长器安放模块、个体化预弯延长器不仅能提高严重PRS婴儿MDO中操作的精准性,缩短手术时间,减少出血,并能避免损伤周围重要解剖结构,是严重PRS婴儿MDO的精准操作方法。

参考文献
[1] GANGOPADHYAY N, MENDONCA D A, WOOA S. Pierre robin sequence[J]. Semin Plast Surg, 2012, 26(2): 76–82. DOI:10.1055/s-0032-1320065
[2] BREUGEM C C, MINK VAN DER MOLEN A B. What is 'Pierre Robin sequence'[J]. J Plast Reconstr Aesthet Surg, 2009, 62(12): 1555–1558. DOI:10.1016/j.bjps.2008.06.050
[3] JAKOBSEN L P, KNUDSEN M A, LESPINASSE J, et al. The genetic basis of the Pierre Robin Sequence[J]. Cleft Palate Craniofac J, 2006, 43(2): 155–159. DOI:10.1597/05-008.1
[4] CÔTÉ A, FANOUS A, ALMAJED A, et al. Pierre Robin sequence: review of diagnostic and treatment challenges[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(4): 451–464. DOI:10.1016/j.ijporl.2015.01.035
[5] GÖZV A, GENÜ B, PALABIYIK M, et al. Airway management in neonates with Pierre Robin sequence[J]. Turk J Pediatr, 2010, 52(2): 167–172.
[6] VENDITTELLI B L, DEC W, WARREN S M, et al. The importance of vector selection in preoperative planning of bilateral mandibular distraction[J]. Plast Reconstr Surg, 2008, 122(4): 1144–1153. DOI:10.1097/PRS.0b013e318185d596
[7] GATENO J, ALLEN M E, TEICHGRAEBER J F, et al. An in vitro study of the accuracy of a new protocol for planning distraction osteogenesis of the mandible[J]. J Oral Maxillofac Surg, 2000, 58(9): 985–990. DOI:10.1053/joms.2000.8740
[8] COLE A, LYNCH P, SLATOR R. A new grading of Pierre Robin sequence[J]. Cleft Palate Craniofac J, 2008, 45(6): 603–606. DOI:10.1597/07-129.1
[9] 赵竟伊, 靳小雷. 下颌骨牵引成骨技术在婴幼儿Pierre Robin序列征治疗中的应用进展[J]. 中华整形外科杂志, 2014, 30(2): 157–160.
ZHAO J Y, JIN X L. Application progress of mandibular distraction osteogenesis in the treatment of infants with Pierre Robin syndrome[J]. Chin J Plastic Surg, 2014, 30(2): 157–160. DOI:10.3760/cma.j.issn.1009-4598.2013.02.25
[10] CHING J A, DAGGETT J D, ALVAREZ S A, et al. A simple mandibular distraction protocol to avoid tracheostomy in patients with Pierre Robin sequence[J]. Cleft Palate Craniofac J, 2017, 54(2): 210–215. DOI:10.1597/14-211
[11] RACHMIEL A, EMODI O, RACHMIEL D, et al. Internal mandibular distraction to relieve airway obstruction in children with severe micrognathia[J]. Int J Oral Maxillofac Surg, 2014, 43(10): 1176–1181. DOI:10.1016/j.ijom.2014.06.013
[12] SAHOO N K, ROY I D, DALAL S, et al. Distraction osteogenesis for management of severe OSA in Pierre Robin sequence: an approach to elude tracheostomy in infants[J]. J Maxillofac Oral Surg, 2016, 15(4): 501–505. DOI:10.1007/s12663-016-0888-4
[13] MACKAY D R. Controversies in the diagnosis and management of the Robin sequence[J]. J Craniofac Surg, 2011, 22(2): 415–420. DOI:10.1097/SCS.0b013e3182074799
[14] COLLARES M V, DUARTE D W, SOBRAL D S, et al. Neonatal mandibular distraction osteogenesis reduces cleft palate width and lengthens soft palate, influencing palatoplasty in patients with Pierre Robin sequence[J]. J Craniofac Surg, 2016, 27(5): 1267–1272. DOI:10.1097/SCS.0000000000002752
[15] 李阳, 伊彪, 王兴, 等. 三维头模设计及个体化模板引导技术在OSAHS患者下颌骨牵引成骨术中的应用[J]. 中华口腔正畸学杂志, 2014, 21(2): 95–99.
LI Y, YI B, WANG X, et al. Application of 3D head mold planning and individualized templates in mandibular distraction[J]. Chin J Orthodont, 2014, 21(2): 95–99. DOI:10.3760/cma.j.issn.1674-5760.2014.02.009
[16] SŁOWIŃSKI J J, CZARNECKA A. Numerical modeling of the traction process in the treatment for Pierre-Robin sequence[J]. Int J Pediatr Otorhinolaryngol, 2016, 89: 86–91. DOI:10.1016/j.ijporl.2016.07.030
[17] METZGER M C, HOHLWEG-MAJERT B, SCHWARZ U, et al. Manufacturing splints for orthognathic surgery using a three-dimensional printer[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(2): e1–e7. DOI:10.1016/j.tripleo.2007.07.040
[18] COHEN A, LAVIV A, BERMAN P, et al. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 108(5): 661–666. DOI:10.1016/j.tripleo.2009.05.023
http://dx.doi.org/10.16016/j.1000-5404.201808130
中国人民解放军总政治部、国家科技部及国家新闻出版署批准,
由第三军医大学主管、主办

文章信息

刘燕, 邱林, 傅跃先, 袁心刚, 肖军, 李天武, 毛小波, 丁雄辉, 梅爱莲.
LIU Yan, QIU Lin, FU Yuexian, YUAN Xingang, XIAO Jun, LI Tianwu, MAO Xiaobo, DING Xionghui, MEI Ailian.
计算机辅助+3D打印技术在婴儿严重Pierre-Robin综合征下颌骨牵引成骨术中的应用
Application of computer aided simulation and three-dimensional printing in mandibular distraction osteogenesis for serious Pierre-Robin syndrome in infants
第三军医大学学报, 2019, 41(6): 613-617
Journal of Third Military Medical University, 2019, 41(6): 613-617
http://dx.doi.org/10.16016/j.1000-5404.201808130

文章历史

收稿: 2018-08-19
修回: 2018-10-22

相关文章

工作空间