0
文章快速检索  
高级检索
MG53预处理改善离体大鼠心脏缺血再灌注心律失常
唐北川1, 任先军1, 邹喜红2    
1 400037 重庆,第三军医大学新桥医院骨科;
2 400054 重庆,重庆理工大学车辆工程学院2
摘要目的 利用有限元法对比分析连续两节段颈椎人工椎间盘置换联合节段融合手术(hybrid手术)后颈椎的生物力学特性。 方法 建立C2~T1有限元模型。应用Prestige-LP假体模拟置换,以前路钢板系统加松质骨融合模拟节段融合,构建C3~C5、C4~C6、C5~C7共6组hybrid手术(C3~C4置换联合C4~C5融合、C3~C4融合联合C4~C5置换,C4~C5置换联合C5~C6融合、C4~C5融合联合C5~C6置换,C5~C6置换联合C6~C7融合、C5~C6融合联合C6~C7置换)。对应的组间比较置换节段的椎间活动度(range of motion,ROM)、小关节应力(Mises应力)的差异和变化趋势。 结果 ①C3~C5 hybrid手术:前屈、后伸、轴转、侧弯时置换节段的ROM增加,C3~C4置换分别增加119%、186%、208%、173%;C4~C5置换分别增加142%、262%、251%、164%。后伸、轴转、侧弯时置换节段小关节Mises应力增加,C3~C4置换分别增加256%、187%、185%;C4~C5置换分别增加50%、54%、124%。②C4~C6 hybrid手术:在前屈、后伸、轴转、侧弯时置换节段的ROM增加,C4~C5置换分别增加107%、200%、238%、145%;C5~C6置换分别增加65%、130%、147%、111%。C4~C5置换小关节Mises应力在后伸、轴转、侧弯时分别增加20%、53%、111%;C5~C6置换小关节Mises应力在后伸时降低8%,轴转、侧弯时分别增加297%、60%。③C5~C7 hybrid手术:在前屈、后伸、轴转、侧弯时置换节段的ROM增加,C5~C6置换分别增加77%、167%、179%、122%;C6~C7置换分别增加84%、268%、324%、230%。C5~C6置换节段小关节Mises应力在轴转、侧弯时分别增加267%、63%;C6~C7置换节段小关节Mises应力在前屈、后伸、轴转、侧弯时分别增加202%、155%、204%、145%。 结论 hybrid手术中置换节段的ROM和小关节Mises应力均有增加。选择生理活动度较大的节段予以置换,而相对较小的节段予以融合,这种hybrid组合方式对颈椎生物力学的影响较小。
关键词颈椎间盘置换     生物力学     有限元     hybrid手术    
Finite element analysis of biomechanical comparison of cervical hybrid surgery in continuous two-level segments
Tang Beichuan1, Ren Xianjun1 , Zou Xihong2    
1 Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037;
2 Vehicle Engineering, Chongqing University of Technology, Chongqing, 400054, China
Abstract:Objective To comparatively analyze biomechanical characteristics of cervical hybrid surgery (artificial cervical disc replacement combined with segmental fusion) in continuous two-level with finite element method. Methods C2~T1 finite element model was established to simulate arthroplasty by Prestige-LP prosthesis, and arthrodesis by anterior plate/screw/allograft in C3~C5, C4~C6 and C5~C7 segments. The difference and change trend of range of motion (ROM) and stress of facet joint (Von Mises stress, Mises stress) of corresponding hybrid surgery were compared. Results (1) With C3~C5 hybrid surgery, the ROM of C3~C4 segments was increased by 119%, 186%, 208%, and 173% in flexion, extension, axial rotation, and lateral bending, respectively, while that of C4~C5 segments was increased by 142%, 262%, 251%, and 164%, respectively. The facet Mises stress of C3~C4 segments was increased by 256%, 187%, and 185% in extension, axial rotation, and lateral bending, respectively, while that of C4~C5 segments was increased by 50%, 54%, and 124%, respectively. (2) With C4~C6 hybrid surgery, the ROM of C4~C5 segments was increased by 107%, 200%, 238%, and 145% in flexion, extension, axial rotation, and lateral bending, respectively, while that of C5~C6 segments was increased by 65%, 130%, 147%, and 111%, respectively. The facet Mises stress of C4~C5 segments was increased by 20%, 53%, and 111% in extension, axial rotation, and lateral bending, respectively, while that of C5~C6 segments was reduced by 8% in extension, and increased by 297% and 60% in rotation and later bending, respectively. (3) With C5~C7 hybrid surgery, the ROM of C5~C6 segments was increased by 77%, 167%, 179%, and 122% in flexion, extension, axial rotation, and lateral bending, respectively, and that of C6~C7 segments was increased by 84%, 268%, 324%, and 230%, respectively. The facet Mises stress of C5~C6 segments was increased by 267% and 63% in axial rotation and lateral bending, respectively; while that of C6~C7 segments was increased by 202%, 155%, 204%, and 145% in flexion, extension, axial rotation, and lateral bending, respectively. Conclusion The ROM and Mises stress of the replacement segments in the hybrid surgery are increased. The segments with larger ROM are selected for arthroplasty while the segments with smaller ROM are selected for arthrodesis, and the hybrid surgery has less effect on the cervical biomechanics.
Key words: artificial cervical disc replacement     biomechanics     finite element method     hybrid surgery    

颈椎前路减压融合术(anterior cervical discectomy and fusion,ACDF)长期以来被认为是治疗颈椎间盘退变性颈椎病的经典术式,但是长期的临床随访发现其术后临椎病(adjacent segment disease,ASD)的发病率每年在3%左右[1]。同时脊柱生物力学研究发现,融合节段越多,对邻近节段影响越大[2]。为解决邻近节段退变的问题,脊柱外科发展了非融合技术,以人工椎间盘置换(artificial cervical disc replacement,ACDR)为代表的非融合手术,保留手术节段的运动,从而缓解邻近节段应力集中,进而达到阻止或减缓ASD的发生。单节段人工颈椎间盘置换目前已得到普遍肯定并广泛开展。对于多节段颈椎病,理论上可以行多节段人工颈椎间盘置换,但是受人工颈椎间盘置换的手术指征的限制,并且由此产生的高昂医疗费用,特别是多节段ACDR目前还缺乏大样本随机对照试验长期随访的临床研究数据,限制了其在连续多节段颈椎病中的应用开展。颈椎间盘置换联合节段融合治疗多节段颈椎病(hybrid手术)已被少数学者实验性开展。目前少量的早期临床随访结果显示其手术效果优良[3, 4]。hybrid手术的生物力学研究初步结论是hybrid手术的生物力学优于多节段ACDF[5, 6]。本研究利用有限元法对比分析在相同的两节段,ACDF和ACDR互换位置的两种hybrid手术后颈椎生物力学特征的差异,以期为hybrid手术本身的节段位置组合提供力学参考。 1 材料与方法 1.1 模型构建

选取1名健康成年男性,27岁,身高173 cm,体质量60 kg,既往无颈椎外伤、手术史,平素无颈痛不适等。志愿者行颈椎正侧位片、过屈过伸位片、MRI检查,排除颈椎及间盘退变。志愿者行CT(GE公司,light speed VCT systerm,64排螺旋CT)扫描C2~T1,扫描条件: 400 mA/120 kV,层厚0.625 mm,间距0.3 mm,得DICOM格式图像文件。将DICOM格式文件导入MIMICS 10.1,通过阈值划分,蒙盖编辑,区域生长构建C2~T1的骨性椎体几何模型;将几何模型导入RapidForm 2006进行编辑修饰;再将模型导入ABAQUS 6.11有限元分析软件,行模型构建和有限元分析。

C2~T1有限元模型,骨性结构基于CT扫描构建。椎间盘由椎体之间的空间构建,外围纤维环和基质,中央为髓核。纤维环纤维由交叉只承受拉力负荷的非线性杆单元构建,占19%。髓核居中央偏后,占43%。韧带(包括前纵韧带、后纵韧带、黄韧带、脊间韧带和小关节突韧带)由只承受拉力负荷的非线性杆单元构建。

人工颈椎间盘选用Medtronic公司的Prestige-LP假体。根据假体实物精确测量构建假体模型。其球半径6.28 mm,槽半径6.35 mm,槽前后平移2 mm。参照Zephir前路颈椎钢板系统(Medtronic公司)设计简化的前路钢板系统模型,设置钢板厚2 mm,宽15 mm,钉直径3.5 mm。应用Prestige-LP假体模拟置换,以前路钢板系统加松质骨融合模拟节段融合,构建hybrid手术模型。模型各部分的构建参见解剖和既往文献[7, 8]。模型见图 1,材料参数见表 1[9, 10]

A:Prestige-LP假体模型;B:前路钢板系统模型;C:正常颈椎模型;D:C3~C4置换联合C4~C5融合模型;E:C3~C4融合联合C4~C5置换模型;F:C4~C5置换联合C5~C6融合模型;G:C4~C5融合联合C5~C6置换模型;H:C5~C6置换联合C6~C7融合模型;I:C5~C6融合联合C6~C7置换模型 图 1 人工颈椎间盘、前路钢板系统、C2~T1正常组和hybrid手术组有限元模型

表 1 颈椎有限元模型和假体材料属性
成分弹性模量(MPa)泊松比
皮质骨12 0000.29
松质骨1000.29
终板1 2000.29
纤维环基质3.40.40
纤维环纤维4500.45
髓核10.49
Prestidge-LP人
工颈椎间盘
110 0000.30
1.2 模型分组

模型构建分为正常对照组模型和hybrid手术模型,hybrid手术模型根据手术节段、置换与融合的位置组合方式分为6组(图 1):①C3~C5 hybrid手术分为A1、A2组。A1组:C3~C4置换联合C4~C5融合;A2组:C3~C4融合联合C4~C5置换。②C4~C6 hybrid手术分为B1、B2组。B1组:C4~C5置换联合C5~C6融合;B2组:C4~C5融合联合C5~C6置换。③C5~C7 hybrid手术分为C1、C2组。C1组:C5~C6置换联合 C6~C7融合;C2组:C5~C6融合联合C6~C7置换。 1.3 模型加载

边界条件设置T1固定。75 N前载荷模拟头颅和肌肉负荷加载于C2椎体中心。于正常对照组模型C2椎体中心施加1.0 N·m动力力矩,模拟前屈、后伸、轴转、侧弯四种运动,以正常对照组模型C2运动终点为其余hybrid手术组位移控制的运动终点。本实验hybrid手术组均在位移控制下行生物力学测试,模拟各手术组前屈、后伸、轴转、侧弯运动。测量指标:C2~T1各个节段活动度(range of motion,ROM),各个节段小关节应力(Mises应力)。 2 结果 2.1 有限元模型验证

将正常对照组模型在前屈、后伸、侧弯、轴转运动的活动度ROM与既往研究[11, 12, 13]进行对比验证(图 2),本实验有限元模型与既往研究的结果基本一致,证明模型可以有效预测分析颈椎的生物力学。

图 2 正常对照组模型与文献报道体外实验的ROM对比验证
2.2 hybrid手术组组内比较

本实验ROM和小关节Mises应力均使用相对于正常对照组的百分比变化率,即正常对照组为0,正值为增加,负值为降低。在正常对照组,除C6~C7节段外小关节Mises应力绝对值在前屈时很小,小于后伸、轴转、侧弯时2~5个数量级,其余hybrid手术组的结果也都如此,为此,本实验结果中各节段Mises应力小于0.01 MPa者忽略不计。前屈时除C6~C7外其余节段Mises应力不予考虑。 2.2.1 C3~C5 hybrid手术A1、A2组比较 2.2.1.1 ROM

C3~C5 hybrid手术A1、A2组在前屈、后伸、轴转、侧弯四种运动模式下ROM变化趋势一致,即置换节段运动大幅度升高,而融合节段降低(图 3A)。A1组置换节段C3~C4的ROM前屈、后伸、轴转、侧弯时分别增加119%、186%、208%、173%。A2组置换节段C4~C5的ROM在前屈、后伸、轴转、侧弯时分别增加142%、262%、251%、164%。可见,A1组的置换节段C3~C4的ROM增加率除侧弯外均低于A2组的置换节段C4~C5的ROM增加率。

图 3 C3~C5 hybrid手术A1、A2组在位移控制下的ROM(A)和小关节Mises应力(B)比较
2.2.1.2 小关节Mises应力

A1、A2组置换节段小关节Mises应力增加,融合节段Mises应力降低(图 3B)。A1组的置换节段C3~C4的小关节Mises应力后伸、轴转、侧弯时分别增加256%、187%、185%。A2组的置换节段C4~C5的小关节Mises应力在后伸、轴

转、侧弯时分别增加50%、54%、124%。可见,A1组置换节段小关节Mises应力增加率远远高于A2组的置换节段的小关节Mises应力增加率。 2.2.2 C4~C6 hybrid手术B1、B2组比较 2.2.2.1 ROM

B1、B2组在前屈、后伸、轴转、侧弯四种运动模式下ROM的变化趋势一致,即置换节段ROM大幅度升高,而融合节段ROM降低。B1组置换节段C4~C5的ROM在前屈、后伸、轴转、侧弯时分别增加107%、200%、238%、145%。B2组置换节段C5~C6的ROM在前屈、后伸、轴转、侧弯时分别增加65%、130%、147%、111%。比较而言,B1组置换节段ROM增加率均高于B2组(图 4A)。

图 4 C4~C6 hybrid手术B1、B2组在位移控制下的ROM(A)、小关节Mises应力(B)比较
2.2.2.2 小关节Mises应力

B1、B2组在后伸、轴转、侧弯时置换节段小关节Mises应力增加,融合节段小关节Mises应力降低。B1组的置换节段C4~C5的小关节Mises应力在后伸、轴转、侧弯时分别增加20%、53%、111%。B2组的置换节段C5~C6的小关节Mises应力在后 伸时降低8%,轴转、侧弯时分别增

加279%、60%。可见,除轴转外B1组置换节段的小关节Mises应力增加率均高于B2组(图 4B)。 2.2.3 C5~C7 hybrid手术C1、C2组比较 2.2.3.1 ROM

C1、C2组在前屈、后伸、轴转、侧弯四种运动模式下置换节段ROM大幅度升高,而在融合节段降低。C1组置换节段C5~C6的ROM 在前屈、后伸、轴转、侧弯时分别增加77%、167%、179%、122%。C2组置换节段C6~C7的ROM在前屈、后伸、轴转、侧弯时分别增加84%、268%、324%、230%。在四种运动模式下C1组的置换节段ROM增加率均低于C2组的置换节段ROM增加率(图 5A)。

图 5 C5~C7 hybrid手术C1、C2组在位移控制下的ROM(A)、小关节Mises应力(B)比较
2.2.3.2 小关节Mises应力

C1组的置换节段C5~C6的小关节Mises应力在前屈、后伸时基本无变化,在轴转、侧弯时分别增加267%、63%。C2组的置换节段C6~C7的小关节Mises应力在前屈、后伸、轴转、侧弯时分别增加202%、155%、204%、145%。可见,除轴转外C1组小关节Mises应力增加率均低于C2组(图 5B)。 3 讨论

颈椎hybrid手术是一个新兴手术,目前相关研究较少。Barry等[14]比较研究hybrid手术与双节段置换、双节段融合的生物力学差异,表明hybrid手术的力学特性介于双节段置换和双节段融合之间。同时少量的hybrid手术早期临床随访结果显示,hybrid手术的置换节段保持较好的活动度,对邻近节段没有严重不利影响[15, 16]。Cho等[17]列出C5~C7两种hybrid手术的ROM对比,但其主要分析hybrid手术相对于双节段置换组、双节段融合组的运动学特性,而没有详细比较两种hybrid手术的力学差异。我们认为,研究hybrid的不同组合形式之间的生物力学对比,有益于遴选具有相对力学优势的hybrid手术组合,为临床提供参考。

本研究发现hybrid手术生物力学变化趋势一致,即hybrid手术中的置换节段的ROM和小关节Mises应力均增加。Cunningham等[18]的体外实验也验证了hybrid术中置换节段的ROM出现代偿性增加。Faizan等[19]以体外实验和有限元实验共同证实hybrid手术中置换节段的ROM出现代偿性增加,同时还发现置换节段的小关节负荷增加。置换节段活动度的恢复和保持显然是ACDR手术特征之一,也是所期望的。ROM过度的增加还不能确定是否为不利因素[17],但小关节Mises应力正是反映小关节负荷的常用指标,过大的负荷是导致小关节退变的因素之一。Chang等[20]的生物力学实验发现置换节段的小关节应力增高95.4%,并提出要关注ACDR在解决临椎病的同时可能导致置换节段小关节的退变。

对于C3~C5 hybrid手术,C3~C4置换节段的ROM增加率在前屈、后伸、轴转时均低于C4~C5置换节段,但在侧弯时高于C4~C5置换节段。从置换节段的小关节Mises应力方面来看,在三种运动模式下,C3~C4置换节段小关节Mises应力增加率远远高于C4~C5置换节段。从正常颈椎生理运动幅度来看,C3~C4的活动度小于C4~C5的活动度[21]。同时,C3~C4生理活动度在C3~C7颈椎节段中又是最小的。本实验中,C3~C4置换时ROM增加率在前屈、后伸、轴转时低于C4~C5置换时,这种变化除有限元模型的构建因素外,可能与C3~C4生理活动度最小有关。在位移控制下,C3~C4置换节段的ROM代偿能力和增加率受到限制,但是该节段小关节Mises应力增加率却极大。而小关节Mises应力是反映颈椎节段生物力学状态最重要的指标之一,由此可见C3~C5 hybrid手术中C4~C5置换对颈椎生物力学的影响相对较小。

对于C4~C6 hybrid手术,在四种运动模式下,C4~C5置换节段的ROM增加率均高于C5~C6置换节段。C4~C5置换节段的小关节Mises应力增加率除轴转外均高于C5~C6置换节段。同样,C4~C5生理活动度约小于C5~C6[21],在位移控制下,C4~C5运动代偿引起颈椎力学的改变程度大于C5~C6。即C4~C6 hybrid手术中C5~C6置换对颈椎生物力学的影响相对较小。

对于C5~C7 hybrid手术,在四种运动模式下,C6~C7置换节段的ROM增加率均高于C5~C6置换节段。C6~C7置换节段的小关节Mises应力增加率除轴转外均高于C5~C6置换节段。同样,C6~C7的生理活动度小于C5~C6[21],在位移控制下C6~C7运动代偿引起的颈椎力学的改变程度要大于C5~C6。可见C5~C7 hybrid手术中C5~C6置换对颈椎生物力学的影响相对较小。Cho等[17]行体外生物力学实验表明,C5~C6融合联合C6~C7置换的hybrid手术组在屈伸时,因C6~C7代偿不足导致邻近节段的ROM显著增加;而C5~C6置换联合C6~C7融合的hybrid手术组却不会显著影响邻近节段。

Ren等[22]和Cardoso等[23]的hybrid手术临床随访研究,选择hybrid手术组合形式时,主要根据节段退变条件是否适合置换,当两个节段都适合置换时,根据节段生理活动度大小(生理活动度:C5~C6>C4~C5>C6~C7>C3~C4[21])的特性来选择,一般选生理活动度较大的置换,相对较小的予以融合。这种选择组合hybrid的策略和本实验结论一致,保留活动度较大的节段予以置换,对颈椎的生物力学影响较小。对于颈椎退变性疾病,Barbagallo等[24]提出了详细的hybrid手术置换节段选择条件,但是仍然会面临两个节段都适合置换的情况,因此,本实验具有临床参考价值。同时,在轻度退变的颈椎中,其存留的活动度可能达不到生理活动度,但两个节段仍适合置换的情况,本研究实验推论根据术前过屈过伸位X线片测量ROM,选择较大的节段在hybrid手术中予以置换,而相对较小的节段予以融合,这种hybrid组合对颈椎的生物力学影响相对较小。

本实验的有限元模型有一定的简化,存在一些局限,最重要的是忽略了椎旁肌肉的作用。但是有限元法的生物力学研究在对比研究中反应变化趋势时具有一定的优势,其结果也较为可靠。本实验利用有限元法对比分析hybrid手术节段的生物力学差异和变化趋势,得出以下结论:①hybrid手术中的置换节段的ROM和小关节Mises应力均增加。②选择生理活动度较大的节段予以置换,而相对生理活动度较小的节段予以融合,这种hybrid组合方式对颈椎的生物力学影响相对较小。当然,本实验仅仅从手术节段分析,hybrid手术生物力学的对比还要考虑邻近节段的影响,同时实验结论还需要下一步临床实验验证。

参考文献
[1] Hilibrand A S, Carlson G D, Palumbo M A, et al. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis[J]. J Bone Joint Surg Am, 1999, 81(4): 519-528.
[2] Ragab A A, Escarcega A J, Zdeblick T A. A quantitative analysis of strain at adjacent segments after segmental immobilization of the cervical spine[J]. J Spinal Disord Tech, 2006, 19(6): 407-410.
[3] Shin D A, Yi S, Yoon D H, et al. Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease[J]. Spine (Phila Pa 1976), 2009, 34(11): 1153-1159, 1160-1161.
[4] Hey H W, Hong C C, Long A S, et al. Is hybrid surgery of the cervical spine a good balance between fusion and arthroplasty? Pilot results from a single surgeon series[J]. Eur Spine J, 2013, 22(1): 116-122.
[5] Zhao Y, Li Q, Mo Z, et al. Finite element analysis of cervical arthroplasty combined with fusion against 2-level fusion[J]. J Spinal Disord Tech, 2013, 26(6): 347-350.
[6] Lee M J, Dumonski M, Phillips F M, et al. Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion[J]. Spine (Phila Pa 1976), 2011, 36(23): 1932-1939.
[7] Standring S. Gray's Anatomy: the anatomical basis of clinical practice[M]. 40th ed. Edinburgh: Churchill Livingstone, 2008, 712-734.
[8] Kode S, Kallemeyn N A, Smucker J D, et al. The effect of multi-level laminoplasty and laminectomy on the biomechanics of the cervical spine: a finite element study[J]. Iowa Orthop J, 2014, 34: 150-157.
[9] Kang H, Park P, La-Marca F, et al. Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study[J]. Neurosurg Focus, 2010, 28(6): E9.
[10] Mo Z J, Zhao Y B, Wang L Z, et al. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue[J]. Eur Spine J, 2014, 23(3): 613-621.
[11] Moroney S P, Schultz A B, Miller J A, et al. Load-displacement properties of lower cervical spine motion segments[J]. J Biomech, 1988, 21(9): 769-779.
[12] Panjabi M M, Crisco J J, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves[J]. Spine (Phila Pa 1976), 2001, 26(24): 2692-2700.
[13] Finn M A, Brodke D S, Daubs M, et al. Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty[J]. Eur Spine J, 2009, 18(10): 1520-1527.
[14] Barrey C, Campana S, Persohn S, et al. Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: an in vitro investigation[J]. Eur Spine J, 2012, 21(3): 432-442.
[15] Lee S B, Cho K S, Kim J Y, et al. Hybrid surgery of multilevel cervical degenerative disc disease: review of literature and clinical results[J]. J Korean Neurosurg Soc, 2012, 52(5): 452-458.
[16] Peng C W, Yue W M, Basit A, et al. Intermediate Results of the Prestige LP Cervical Disc Replacement: Clinical and Radiological Analysis With Minimum Two-Year Follow-up[J]. Spine (Phila Pa 1976), 2011, 36(2): E105-E111.
[17] Cho B Y, Lim J, Sim H B, et al. Biomechanical analysis of the range of motion after placement of a two-level cervical ProDisc-C versus hybrid construct[J]. Spine (Phila Pa 1976), 2010, 35(19): 1769-1776.
[18] Cunningham B W, Hu N, Zorn C M, et al. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics[J]. Spine J, 2010, 10(4): 341-349.
[19] Faizan A, Goel V K, Biyani A, et al. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine: a finite element based study[J]. Clin Biomech (Bristol, Avon), 2012, 27(3): 226-233.
[20] Chang U K, Kim D H, Lee M C, et al. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion[J]. J Neurosurg Spine, 2007, 7(1): 33-39.
[21] White A A, Panjabi M M. Clinical Biomechanics of the Spine[M]. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 1990, 86-117.
[22] Ren X, Chu T, Jiang T, et al. Cervical Disc Replacement Combined With Cage Fusion for the Treatment of Multi-level Cervical Disc Herniation[J]. J Spinal Disord Tech, 2012, [Epub ahead of print].
[23] Cardoso M J, Mendelsohn A, Rosner M K. Cervical hybrid arthroplasty with 2 unique fusion techniques[J]. J Neurosurg Spine, 2011, 15(1): 48-54.
[24] Barbagallo G M, Assietti R, Corbino L, et al. Early results and review of the literature of a novel hybrid surgical technique combining cervical arthrodesis and disc arthroplasty for treating multilevel degenerative disc disease: opposite or complementary techniques?[J]. Eur Spine J, 2009, 18 Suppl 1: 29-39.
http://dx.doi.org/10.16016/j.1000-5404.201411247
中国人民解放军总政治部、国家科技部及国家新闻出版署批准,
由第三军医大学主管、主办

文章信息

唐北川, 任先军, 邹喜红
Tang Beichuan, Ren Xianjun, Zou Xihong
连续两节段颈椎hybrid手术的有限元法生物力学对比分析
Finite element analysis of biomechanical comparison of cervical hybrid surgery in continuous two-level segments
第三军医大学学报, 2015, 37(8): 809-815
J Third Mil Med Univ, 2015, 37(8): 809-815.
http://dx.doi.org/10.16016/j.1000-5404.201411247

文章历史

收稿:2014-11-27
修回:2014-12-27

相关文章

工作空间