0
文章快速检索  
高级检索
干细胞在下尿路疾病修复和重建中的运用前景
叶 帆1, 2, 3, 张 晶2, 房加雄2, 齐 跃2, 杨学永2, 李 贺2, 3    
(310000杭州,武警浙江总队杭州医院内一科1300162天津,武警后勤学院附属平津医院老年病科2300162天津,武警部队心血管病研究所3)
摘要:目的 检测长期心脏压力超负荷(pressure overload,POL)大鼠心脏交感神经去甲肾上腺素转运蛋白(norepinephrine transporter NET)、心肌神经生长因子(nerve growth factor NGF)及受体TrkA表达变化,探讨心脏压力超负荷导致交感神经重塑的机制。方法 40只雄性Wistar大鼠分为假手术对照组(n=10)和POL组(n=30)。建立腹主动脉缩窄大鼠心脏POL模型,术后8周,用超声心动图评价大鼠心脏功能,用免疫组化荧光方法检测左心室心肌NGF蛋白表达,实时荧光定量PCR检测心脏交感神经节NET及左室心肌GAP43(growth associated factor,GAP43)、TrkA mRNA表达变化。结果 与假手术组比较,POL大鼠心室间隔舒张期厚度(interventricularseptal thickness during diastole,IVSd)、收缩期心室间隔厚度(interventricularseptal thickness during systole,LVSs)、舒张期左室后壁厚度(diastolic LV posterior wall thickness,LVPWd)显著增厚,左室质量指数(left ventricular mass index, LVMI)升高33.23%(P<0.05);心功能(EF、FS%)增强(P<0.05),表明大鼠心功能代偿。POL组心肌NGF蛋白表达增加(P<0.05),但心肌GAP43、心脏NET mRNA水平未见变化(P>0.05),TrkA mRNA表达下降(P<0.05)。结论 POL后心肌TrkA mRNA低表达可能是限制心肌NGF蛋白促交感神经生长的原因,心脏NET mRNA转录后异常或内化可能是POL后NET功能异常原因。
关键词: 压力超负荷     去甲肾上腺素转运蛋白     神经生长因子     大鼠    
Alterations of cardiac sympathetic norepinephrine transporter, nerve growth factor and neurotrophin receptor TrkA in long-term pressure overload rats
Ye Fan1,2,3, Zhang Jing2, Fang Jiaxiong2, Qi Yue2, Yang Xueyong2, Li He2,3    
(1First Department of Internal Medicine, Zhejiang Provincial Corps Hospital of Chinese People’s Armed Police Force, Hangzhou, Zhejiang Province, 31000; 2Department of Geriatrics, Pingjin Hospital Affiliated to Logistics University of Chinese People’s Armed Police Force, Tianjin, 300162; 3Institute of Cardiovascular Disease of Chinese People’s Armed Police Force, Tianjin, 300162, China)
Abstract:Objective To determine the alteration of cardiac sympathetic norepinephrine transporter (NET), nerve growth factor (NGF) and neurotrophin receptor TrkA in cardiac sympathetic nerve of rats under long-term pressure overload (POL) induced by suprarenal abdominal aortic constriction (AC) in order to elucidate the mechanisms of cardiac sympathetic nerve remodeling. Methods Forty adult Wistar rats weighing 156±10 g were divided into sham-operation (n=10) and POL groups (n=30) randomly. In 8 weeks after AC, the model establishment was identified, transthoracic echocardiography and heart weighting were performed, myocardial NGF protein were determined by immunofluorescence staining, and mRNA levels of NET in cardiac sympathetic ganglia, and TrkA and growth associated protein 43 (GAP-43) in myocardial tissues were determined by real-time PCR. Results POL induced obvious cardiac hypertrophy, with increased interventricularseptal thickness during systole (IVSs), diastolic LV posterior wall thickness (LVPWd), and interventricularseptal thickness during diastole (IVISd). The left ventricular mass index (LVMI) was elevated by 33.23%, and heart function was enhanced also by increased ejection fraction (EF) and LV endocardial fractional shortening (FS%) compared with sham-operation rats (P<0.05). All these indicated that POL resulted in cardiac functional compensation in rats. POL also induced significantly increase of myocardial NGF protein expression (P<0.05), but no difference in the sympathetic NET and myocardial GAP-43 mRNA levels (P>0.05), but obviously decreased expression of TrkA mRNA expression (P<0.05) compared with sham-operation rats. Conclusion Myocardial lower expression of TrkA might restrain cardiac sympathetic nerve sprouting even in high myocardial NGF protein level induced by POL, and abnormality of post-transcription possibly relate to the dysfunction of NET in heart failure.
metformin: pressure overload     norepinephrine transporter     nerve growth factor     rats    

心力衰竭(heart failure,HF)是最常见、危害最大的心血管病之一,为多种心血管疾病终末期表现。HF发生、进展过程中交感神经功能异常发挥重要作用。HF时交感神经变化主要表现为神经活性(sympathetic nerve activity,SNA)增加、神经密度降低、再摄取(reuptake)功能下降[1, 2]。有研究观察到HF时心肌神经生长因子(nerve growth factor,NGF)及受体表达(TrkA)降低,认为与心脏交感神经支配密度/再摄取降低有关[2, 3]。还有研究显示,心脏压力超负荷(pressure overload,POL)后心肌交感神经密度增加,但交感神经递质转运蛋白(norepinephrine transporter,NET)再摄取功能降低[2, 4]。目前对HF时心脏交感神经重塑机制还不完全清楚。心脏超负荷导致心脏重构、交感神经激活,是导致HF最重要病因之一[1, 2, 5]。本实验通过腹主动脉缩窄大鼠模型,观察POL后心脏交感神经NET、心肌NGF蛋白及受体表达以及神经生长相关蛋白(growth associated protein 43,GAP43)表达变化,并讨论其意义及机制。 1 材料与方法 1.1 实验动物

40只7~8周龄雄性Wistar大鼠,体质量(156±10)g,购自中国人民解放军军事医学科学院实验动物中心。室温18~25 ℃、普通饲料、自由饮水。将大鼠分为长期压力超负荷(POL)组(n=30)和假手术组(n=10)。 1.2 主要仪器和试剂

心脏彩色超声诊断仪:GE Vivid 7 Ultrasound System(Alliance Medical Systems公司,USA),ABI Prism 7000型荧光定量PCR仪(Applied Biosystems),80i荧光显微镜(日本Nikon公司)。主要试剂:Trizol试剂(Invitrogen 公司),NGF多克隆抗体(兔抗大鼠,美国Santa Cruz公司),TRITC标记羊抗兔IgG(美国Zymed公司)。 1.3 方法 1.3.1 腹主动脉缩窄大鼠心脏POL模型建立

大鼠经0.4%戊巴比妥钠(40 mg/kg)腹腔麻醉后,仰卧固定,常规消毒,开腹,分离肾动脉上腹主动脉,于双肾动脉上方0.5 cm处用7号针头与腹主动脉平行放置,共同结扎后抽出针头,即形成腹主动脉部分狭窄。假手术组仅分离腹主动脉,不结扎[6]。缩窄后8周用超声心动图检测其心功能指标。 1.3.2 超声心动图检测

0.4%戊巴比妥钠(10 mL/kg)腹腔麻醉,仰卧固定,胸部涂超声耦合剂,用12 MHz超声探头行心脏超声检测。 1.3.3 取材与标本处理

超声检测后,称量并处死动物。立即摘取双侧心脏交感神经节(颈中-星状神经节复合体,middle cervical-stellate ganglion complex,MC-SGC)[7],迅速置于液氮中速冻后,置于-80 ℃冰箱保存备测。摘取心脏,用电子天平称量右心室、左心室,计算左心室质量/体重即心室质量指数(left ventricular mass index,LVMI)。 1.3.4 免疫荧光检测心肌NGF表达

取左室标本,OCT包埋,置于冰冻切片机,连续8 μm厚度制成横断切片,每个标本按3个不同部位各取10张切片。用NGF多克隆抗体以及TRITC标记的羊抗兔IgG标记NGF,于80i型荧光显微镜下观察检测心肌NGF表达。以PBS液替代双抗为阴性对照。用Image Pro Plus 4.5图像分析软件进行图像分析[6]1.3.5 实时荧光定量PCR检测NET、GAP43、TrKA mRNA表达

按照TRIzol试剂盒操作手册,提取MC-SGC及心肌中总RNA。鉴定RNA完整性,并定量。通过SuperscriptⅡ反转录酶反转录获得cDNA。按GenBank中大鼠NET、GAP43、TrKA、β-actin序列,利用ABI Prism 7300自带的引物设计软件(Primer Express)设计以下配对引物: NET正义链:5′-TCCATTCTCTTTGCCGTGCT -3′ ,反义链:5′-CCTGGCTTAAACCCCATCATC-3′ 。GAP43正义链:5′-TGTACCCCGGTTTTTTGATCTG-3′ ,反义链:5′-CAGAACGGAACATTGCACACA-3′。TrKA正义链:5′-ATCCTCTACCGCAAGTTCAGCA-3′,反义链:5′-ATCGCCTCAGTGTTGGAGA-GCT-3′。β-actin 正义链:5′-TCTGTGTGGATTGGTGGCTCT-3′ ,反义链:5′-AGAAGCATTTGCGGTGCAC-3′(引物由上海博亚生物技术公司合成)[6]

Real-time荧光定量PCR反应在ABI Prism 7000型荧光定量PCR仪中进行。50 ℃孵育2 min,然后95 ℃,10 min;接着进行45个循环,95 ℃,15 s,59 ℃,1 min,72 ℃,20 s。每个样本重复3次。通过参数设定以及ABI PRISM Sequence Detection software处理分析,得到不同样本相对于不同基因Ct值,通过检测每个样品管家基因(β-actin),将待测基因归一化。得到 ΔCt=Ct待测基因-Ct管家基因(β-actin),再转换为原始模板浓度= 2-ΔCt,得出检测目标原始模板相对表达量。 1.4 统计学分析

采用SPSS 16.0统计软件,实验结果以x±s表示,均数之间的比较用成组双样本t检验。 2 结果 2.1 2组大鼠心脏功能评价

与假手术组比较,POL大鼠可见左心室肥厚,心腔扩大。超声心动图检测示POL大鼠心室间隔舒张期厚度(interventricularseptal thickness during diastole,IVSd)、收缩期心室间隔厚度(interventricularseptal thickness during systole,LVSs)、舒张期左室后壁厚度(diastolic LV posterior wall thickness,LVPWd)、射血分数(ejection fraction,EF)、左室内膜缩短率(LV endocardial fractional shortening,FS%)、LVMI显著升高(P<0.05),表明POL诱导大鼠出现心肌肥厚,心功能代偿(表 1)。

表 1 2组大鼠心脏超声指标及心室质量指数比较(x±s)
组别n室间隔舒张期厚度(cm)收缩期心室间隔厚度(cm)舒张期左室后壁厚度(cm)射血分数(%)左室内膜缩短率(%)心室质量指数(mg/g)
假手术组100.175±0.0440.285±0.0620.160±0.0500.684±0.0380.333±0.0282.039±0.102
POL组300.280±0.042a0.369±0.047a0.244±0.054a0.765±0.059a0.399±0.049a2.716±0.129a
a:P<0.05,与假手术组比较
2.2 2组大鼠心肌NGF表达

与假手术组比较,POL大鼠心肌NGF蛋白表达增加(P<0.05,图 1)。

A:假手术组;B:POL组 图 1 免疫荧光染色观察2组大鼠心肌NGF蛋白表达(荧光显微镜 ×200)
2.3 2组大鼠心脏交感神经节NET、左室心肌GAP43、TrkA mRNA表达

实时荧光定量PCR结果显示,与假手术组比较,POL大鼠NET、GAP43 mRNA表达水平无变化(P>0.05),同时检测发现TrkA mRNA原始模板浓度存在显著降低[(4.63± 2.15)×10-5 vs (22.32±13.31)×10-5],从而提示TrkA mRNA表达水平明显降低(P<0.05,图 2)。

A:假手术组;B:POL组 图 2 实时荧光定量PCR检测压力超负荷大鼠心肌 TrkA mRNA表达
3 讨论

由神经支配的靶组织细胞合成、分泌的NGF蛋白主要发挥维持神经生长、促神经修复、再生作用,并影响交感神经突触功能、促进再摄取[8, 9]。研究显示,心 血管病时心肌NGF及受体表达异常与心脏交感去神经或功能性交感去神经(functional sympathetic denervation)关系密切[2]

研究观察到,压力负荷大鼠心脏交感神经密度增加,伴有交感神经再摄取功能减退,即功能性交感去神经(functional sympathetic denervation)[2, 3]。本实验大鼠POL 8周后心肌肥厚,心功能代偿,心脏交感神经NET mRNA 表达无明显变化,与文献[2]报道一致。可能说明,心脏NET蛋白表达/功能变化可能是导致交感神经再摄取异常的主要原因。分析原因:①NET mRNA转录后异常影响心肌组织NET蛋白表达。Backs等[10]报道,大鼠主动脉缩窄HF模型心肌NET蛋白减少,交感神经再摄取功能下降,而mRNA表达水平无变化,认为转录后异常可能是NET蛋白减少的原因;②NET内化(internalization)可导致再摄取功能减退。心脏交感神经NET膜表达(surface expression)是其发挥正常功能的条件。神经元蛋白激酶C(protein kinase C,PKC)激活,通过神经元细胞膜上的脂阀(lipid raft)介导NET内化[11]。推测POL后心脏交感神经突触前膜PKC激活可能对NET功能降低发挥重要影响。

本实验还观察到,长期POL诱导心肌NGF蛋白表达明显增加,但交感神经生长标志——心肌GAP-43 mRNA水平无明显变化。GAP-43与神经轴突生长密切相关,是神经重塑、再生的分子标志物[12],说明心肌NGF蛋白增加并未导致心脏交感神经生长。研究证明,NGF主要通过两种受体——高亲和力TrkA和低亲和力受体P75NTR介导生物学作用,以TrkA受体介导为主[13]。本实验大鼠POL后心肌TrkA mRNA表达明显降低,可能限制NGF促神经生长作用。然而,从另一角度看,TrkA受体表达降低可能限制NGF导致的交感神经过度生长,对降低交感神经再生相关的心律失常可能有利。研究表明,补充或过表达NGF蛋白与诱发心律失常关系密切[14]

目前研究显示心脏POL大鼠心肌NGF蛋白水平变化并不完全一致[15, 16],我们观察到POL后8周心功能代偿,此时大鼠心肌NGF蛋白表达增加,可能与POL后不同时间阶段有关,应作进一步观察。有研究报告,随POL时间延长,大鼠心肌NGF蛋白从无明显变化到显著增高[16]。此外,POL后心脏交感神经密度与NET功能变化的关系还需进一步实验证明。

参考文献
[1] Lymperopoulos A, Rengo G, Koch W J. Adrenergic nervous system in heart failure: pathophysiology and therapy[J]. Circ Res, 2013, 113(6): 739-753.
[2] 李贺, 周欣, 王珂, 等. 心脏交感神经和心肌间质重塑的共同通路-蛋白激酶C途径[J]. 生命科学, 2011, 23(1): 57-62.
[3] Kimura K, Kanazawa H, Ieda M, et al. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure[J]. Auton Neurosci, 2010, 156(1/2): 27-35.
[4] Kimura K, Ieda M, Kanazawa H, et al. Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy[J]. Circ Res, 2007, 100(12): 1755-1764.
[5] Grossman W, Paulus W J. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling[J]. J Clin Invest, 2013, 123(9): 3701-3703.
[6] He B, Ye F, Zhou X, et al. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats[J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44(11): 931-938.
[7] Li H, Ma X Q, Ye F, et al. Expressions of cardiac sympathetic norepinephrine transporter and beta1-adrenergic receptor decreased in aged rats[J]. J Zhejiang Univ Sci B, 2009, 10(3): 203-210.
[8] 张玉波, 伍亚民, 杨恒文, 等. NGF促周围神经再生过程中对血管生成的影响[J]. 第三军医大学学报, 2005, 27(14): 1463-1466.
[9] Skaper S D. The neurotrophin family of neurotrophic factors: an overview[J]. Methods Mol Biol, 2012, 846: 1-12.
[10] Backs J, Haunstetter A, Gerber S H, et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation[J]. J Mol Cell Cardiol, 2001, 33(3): 461-472.
[11] Nelson T J, Sun M K, Hongpaisan J, et al. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair[J]. Eur J Pharmacol, 2008, 585(1): 76-87.
[12] Meiri K F, Pfenninger K H, Willard M B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones[J]. Proc Natl Acad Sci USA, 1986, 83(10): 3537-3541.
[13] Zhou S, Cao J M, Swissa M, et al. Low-affinity nerve growth factor receptor p75NTR immunoreactivity in the myocardium with sympathetic hyperinnervation[J]. J Cardiovasc Electrophysiol, 2004, 15(4): 430-437.
[14] Feng N, Hoover D B, Paolocci N. Forever young? nerve growth factor, sympathetic fibers, and right ventricle pressure overload[J]. Circ Res, 2007, 100(12): 1670-1672.
[15] Shyu K G, Liou J Y, Wang B W, et al. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in pressure-overloaded rat heart[J]. J Biomed Sci, 2005, 12(2): 409-420.
[16] Nyquist-Battie C, Cochran P K, Evans V R, et al. Regulation of sympathetic presynaptic components in rat left ventricle during ligation of abdominal aorta[J]. Am J Physiol, 1996, 271(4 Pt 2): H1547-H1554.
http://dx.doi.org/10.16016/j.1000-5404.201407123
中国人民解放军总政治部、国家科技部及国家新闻出版署批准,
由第三军医大学主管、主办

文章信息

叶 帆,张 晶,房加雄,齐 跃,杨学永,李 贺.
Ye Fan, Zhang Jing, Fang Jiaxiong, Qi Yue, Yang Xueyong, Li He.
干细胞在下尿路疾病修复和重建中的运用前景
Alterations of cardiac sympathetic norepinephrine transporter, nerve growth factor and neurotrophin receptor TrkA in long-term pressure overload rats
第三军医大学学报, 2015, 37(01): 26-29.
J Third Mil Med Univ, 2015, 37(01): 26-29.
http://dx.doi.org/10.16016/j.1000-5404.201407123

文章历史

收稿:2014-07-30
修回:2014-10-15

相关文章

工作空间